[1] |
吴琼, 葛大庆, 于峻川, 等. 广域滑坡灾害隐患InSAR显著性形变区深度学习识别技术[J]. 测绘学报, 2022, 51(10):2046-2055. DOI: 10.11947/j.AGCS.2022.20220303.
|
|
WU Qiong, GE Daqing, YU Junchuan, et al. Deep learning identification technology of InSAR significant deformation zone of potential landslide hazard at large scale[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2046-2055. DOI: 10.11947/j.AGCS.2022.20220303.
|
[2] |
廖明生, 董杰, 李梦华, 等. 雷达遥感滑坡隐患识别与形变监测[J]. 遥感学报, 2021, 25(1):332-341.
|
|
LIAO Mingsheng, DONG Jie, LI Menghua, et al. Radar remote sensing for potential landslides detection and deformation monitoring[J]. National Remote Sensing Bulletin, 2021, 25(1):332-341.
|
[3] |
朱庆, 曾浩炜, 丁雨淋, 等. 重大滑坡隐患分析方法综述[J]. 测绘学报, 2019, 48(12):1551-1561. DOI: 10.11947/j.AGCS.2019.20190452.
|
|
ZHU Qing, ZENG Haowei, DING Yulin, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1551-1561. DOI: 10.11947/j.AGCS.2019.20190452.
|
[4] |
许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7):957-966.
|
|
XU Qiang, DONG Xiujun, LI Weile. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966.
|
[5] |
刘纪平, 梁恩婕, 徐胜华, 等. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价[J]. 测绘学报, 2022, 51(10):2034-2045. DOI: 10.11947/j.AGCS.2022.20220326.
|
|
LIU Jiping, LIANG Enjie, XU Shenghua, et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2034-2045. DOI: 10.11947/j.AGCS.2022.20220326.
|
[6] |
王佳佳, 殷坤龙, 肖莉丽. 基于GIS和信息量的滑坡灾害易发性评价:以三峡库区万州区为例[J]. 岩石力学与工程学报, 2014, 33(4):797-808.
|
|
WANG Jiajia, YIN Kunlong, XIAO Lili. Landslide susceptibility assessment based on GIS and weighted information value: a case study of Wanzhou district, Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4):797-808.
|
[7] |
TEERARUNGSIGUL S, TORIZIN J, FUCHS M, et al. An integrative approach for regional landslide susceptibility assessment using weight of evidence method: a case study of Yom River Basin, Phrae Province, Northern Thailand[J]. Landslides, 2016, 13(5):1151-1165.
|
[8] |
WANG Yi, DUAN Hexiang, HONG Haoyuan. A comparative study of composite kernels for landslide susceptibility mapping: a case study in Yongxin County, China[J]. CATENA, 2019, 183:104217.
|
[9] |
吴润泽, 胡旭东, 梅红波, 等. 基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例[J]. 地球科学, 2021, 46(1):321-330.
|
|
WU Runze, HU Xudong, MEI Hongbo, et al. Spatial susceptibility assessment of landslides based on random forest: a case study from Hubei section in the Three Gorges Reservoir Area[J]. Earth Science, 2021, 46(1):321-330.
|
[10] |
HUANG Faming, CAO Zhongshan, GUO Jianfei, et al. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping[J]. Catena, 2020, 191:104580.
|
[11] |
SHIRZADI A, SHAHABI H, CHAPI K, et al. A comparative study between popular statistical and machine learning methods for simulating volume of landslides[J]. CATENA, 2017, 157:213-226.
|
[12] |
FANG Zhice, WANG Yi, PENG Ling, et al. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping[J]. International Journal of Geographical Information Science, 2021, 35(2):321-347.
|
[13] |
WANG Yumiao, FENG Luwei, LI Sijia, et al. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China[J]. Catena, 2020, 188:104425.
|
[14] |
仉文岗, 何昱苇, 王鲁琦, 等. 基于水系分区的滑坡易发性机器学习分析方法:以重庆市奉节县为例[J]. 地球科学, 2023, 48(5):2024-2038.
|
|
ZHANG Wengang, HE Yuwei, WANG Luqi, et al. Machine learning solution for landslide susceptibility based on hydrographic division: case study of Fengjie county in Chongqing[J]. Earth Science, 2023, 48(5):2024-2038.
|
[15] |
LIU Yimo, ZHANG Wanchang, ZHANG Zhijie, et al. Risk factor detection and landslide susceptibility mapping using geo-detector and random forest models: the 2018 Hokkaido eastern iburi earthquake[J]. Remote Sensing, 2021, 13(6):1157.
|
[16] |
吴雨辰, 周晗旭, 车爱兰. 基于粗糙集-神经网络的IBURI地震滑坡易发性研究[J]. 岩石力学与工程学报, 2021, 40(6):1226-1235.
|
|
WU Yuchen, ZHOU Hanxu, CHE Ailan. Susceptibility of landslides caused by IBURI earthquake based on rough set-neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6):1226-1235.
|
[17] |
SUN Deliang, SHI Shuxian, WEN Haijia, et al. A hybrid optimization method of factor screening predicated on GeoDetector and random forest for landslide susceptibility mapping[J]. Geomorphology, 2021, 379:107623.
|
[18] |
王琛. 基于地质灾害的宜宾市乡镇聚落选址适宜性研究[D]. 成都: 西华大学, 2022.
|
|
WANG Chen. Study on the suitability of village location in Yibin city based on geological disasters[D]. Chengdu: Xihua University, 2022.
|
[19] |
武雪玲, 沈少青, 牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报(信息科学版), 2016, 41(5):665-671.
|
|
WU Xueling, SHEN Shaoqing, NIU Ruiqing. Landslide susceptibility prediction using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5):665-671.
|
[20] |
陈飞, 蔡超, 李小双, 等. 基于信息量与神经网络模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2020, 39(S1):2859-2870.
|
|
CHEN Fei, CAI Chao, LI Xiaoshuang, et al. Evaluation of landslide susceptibility based on information volume and neural network model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1):2859-2870.
|
[21] |
REYNOLDS A P, RICHARDS G, DE LA IGLESIA B, et al. Clustering rules: a comparison of partitioning and hierarchical clustering algorithms[J]. Journal of Mathematical Modelling and Algorithms, 2006, 5(4):475-504.
|
[22] |
ÜNLÜ R, XANTHOPOULOS P. Estimating the number of clusters in a dataset via consensus clustering[J]. Expert Systems with Applications, 2019, 125:33-39.
|
[23] |
周侯伯, 肖桂荣, 林炫歆, 等. 基于特征筛选与差分进化算法优化的滑坡危险性评估方法[J]. 地球信息科学学报, 2022, 24(12):2373-2388.
|
|
ZHOU Houbo, XIAO Guirong, LIN Xuanxin, et al. Landslide hazard assessment method based on feature screening and differential evolution algorithm optimization[J]. Journal of Geo-Information Science, 2022, 24(12):2373-2388.
|
[24] |
HE Yi, ZHAO Zhan'ao, YANG Wang, et al. A unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood for landslide susceptibility mapping[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104:102508.
|
[25] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
|
|
WANG Jinfeng, XU Chengdong. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134.
|
[26] |
CHANG Zhilu, CATANI F, HUANG Faming, et al. Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(5):1127-1143.
|
[27] |
付连伟. 屏山县滑坡发育特征及时空分布规律研究[D]. 成都: 西南交通大学, 2017.
|
|
FU Lianwei. Research on the developmental characteristics and the regularities of space-time distribution of landslide in Pingshan county[D]. Chengdu: Southwest Jiaotong University, 2017.
|
[28] |
YANG Yang, YANG Jintao, XU Chengdong, et al. Local-scale landslide susceptibility mapping using the B-GeoSVC model[J]. Landslides, 2019, 16(7):1301-1312.
|