Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (8): 1610-1623.doi: 10.11947/j.AGCS.2024.20230224
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
Zhiwei XIE1,2,3,4(), Shuaizhi ZHAI1, Fengyuan ZHANG3,4,5(), Min CHEN2,3,4, Lishuang SUN1
Received:
2023-06-12
Published:
2024-09-25
Contact:
Fengyuan ZHANG
E-mail:zwxrs@sjzu.edu.cn;zwxrs@sjzu.edu.cn;zhangfengyuan@nnu.edu.cn
About author:
XIE Zhiwei (1986—), male, associate professor, majors in image recognition and urban spatial big data analysis. E-mail: zwxrs@sjzu.edu.cn
Supported by:
CLC Number:
Zhiwei XIE, Shuaizhi ZHAI, Fengyuan ZHANG, Min CHEN, Lishuang SUN. Object-oriented high-resolution image classification using inductive graph neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1610-1623.
Tab.1
Classification results of different methods on three data sets"
算法类别 | 数据集 | 各类地物分类准确率/(%) | OA/(%) | Kappa系数 | |||
---|---|---|---|---|---|---|---|
建设用地 | 道路 | 植被 | 水体 | ||||
CART | 数据A | 10.78 | 31.52 | 88.36 | 95.61 | 52.21 | 0.39 |
数据B | 9.71 | 21.22 | 86.68 | 80.44 | 75.27 | 0.61 | |
数据C | 13.38 | 5.23 | 22.19 | 70.61 | 20.77 | 0.10 | |
GCN | 数据A | 98.45 | 7.51 | 82.73 | 78.19 | 84.78 | 0.76 |
数据B | 88.42 | 21.33 | 98.88 | 92.64 | 93.71 | 0.88 | |
数据C | 97.03 | 5.15 | 78.01 | 5.92 | 74.48 | 0.49 | |
GAT | 数据A | 97.47 | 7.75 | 65.15 | 98.62 | 86.85 | 0.79 |
数据B | 92.62 | 10.96 | 98.16 | 94.26 | 94.51 | 0.90 | |
数据C | 96.37 | 5.38 | 75.86 | 5.45 | 73.62 | 0.47 | |
LANet | 数据A | 75.49 | 33.29 | 78.78 | 98.37 | 80.01 | 0.71 |
数据B | 95.76 | 12.17 | 98.92 | 83.01 | 90.27 | 0.84 | |
数据C | 96.12 | 34.93 | 74.58 | 51.92 | 78.80 | 0.64 | |
CCTNet | 数据A | 92.40 | 57.33 | 77.15 | 98.96 | 88.36 | 0.81 |
数据B | 90.42 | 58.98 | 94.58 | 85.92 | 87.48 | 0.82 | |
数据C | 91.48 | 50.33 | 76.28 | 59.44 | 81.23 | 0.67 | |
SLCNet | 数据A | 96.47 | 40.31 | 88.01 | 99.79 | 93.87 | 0.91 |
数据B | 97.13 | 55.56 | 94.77 | 99.53 | 96.64 | 0.94 | |
数据C | 90.71 | 45.47 | 81.16 | 52.62 | 80.09 | 0.66 | |
ANF GraphSAGE | 数据A | 97.32 | 13.32 | 97.58 | 99.22 | 94.17 | 0.91 |
数据B | 97.65 | 56.40 | 98.86 | 97.88 | 97.50 | 0.95 | |
数据C | 97.72 | 39.13 | 77.55 | 53.73 | 83.51 | 0.69 |
[1] | 王密, 杨芳. 智能遥感卫星与遥感影像实时服务[J]. 测绘学报, 2019, 48(12): 1586-1594. DOI: 10.11947/j.AGCS.2019.20190454. |
WANG Mi, YANG Fang. Intelligent remote sensing satellite and remote sensing image real-time service[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1586-1594. DOI: 10.11947/j.AGCS.2019.20190454. | |
[2] | ZHU Qiqi, GUO Xi, DENG Weihuan, et al. Land-use/land-cover change detection based on a Siamese global learning framework for high spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184: 63-78. |
[3] | 周培诚, 程塨, 姚西文, 等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1): 182-197. |
ZHOU Peicheng, CHENG Gong, YAO Xiwen, et al. Machine learning paradigms in high-resolution remote sensing image interpretation[J]. National Remote Sensing Bulletin, 2021, 25(1): 182-197. | |
[4] | KAUR S, BANSAL R K, MITTAL M, et al. Mixed pixel decomposition based on extended fuzzy clustering for single spectral value remote sensing images[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(3): 427-437. |
[5] | 王志盼, 沈彦, 王亮, 等. 单类分类框架下的高分辨率遥感影像建筑物变化检测算法[J]. 武汉大学学报(信息科学版), 2020, 45(10): 1610-1618. |
WANG Zhipan, SHEN Yan, WANG Liang, et al. High-resolution remote sensing image building change detection based on one-class classifier framework[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1610-1618. | |
[6] | LI Zhiqing, LI Erzhu, SAMAT A, et al. An object-oriented CNN model based on improved superpixel segmentation for high-resolution remote sensing image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4782-4796. |
[7] | DOU Jie, CHANG K T, CHEN Shuisen, et al. Automatic case-based reasoning approach for landslide detection: integration of object-oriented image analysis and a genetic algorithm[J]. Remote Sensing, 2015, 7(4): 4318-4342. |
[8] | KATTENBORN T, LEITLOFF J, SCHIEFER F, et al. Review on convolutional neural networks (CNN) in vegetation remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 24-49. |
[9] | GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 1-15. |
[10] | PAN Deng, ZHANG Meng, ZHANG Bo. A generic FCN-based approach for the road-network extraction from VHR remote sensing images-using OpenStreetMap as benchmarks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2662-2673. |
[11] | HUANG Wei, TANG Hong, XU Penglei. OEC-RNN: object-oriented delineation of rooftops with edges and corners using the recurrent neural network from the aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12. |
[12] | AUDEBERT N, LE S B, LEFÈVRE S. Beyond RGB: very high resolution urban remote sensing with multimodal deep networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 140: 20-32. |
[13] | HONG Danfeng, GAO Lianru, YOKOYA N, et al. More diverse means better: multimodal deep learning meets remote-sensing imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(5): 4340-4354. |
[14] | ROY S K, DERIA A, HONG Danfeng, et al. Multimodal fusion transformer for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-20. |
[15] | 靳志宾, 蒲英霞, 陈刚, 等. 基于地理加权的k-NN高分辨率遥感影像分类算法改进[J]. 遥感技术与应用, 2013, 28(1): 97-102. |
JIN Zhibin, PU Yingxia, CHEN Gang, et al. The modified k-NN classifier for high spatial resolution remote sensing images based on geographical weighted models[J]. Remote Sensing Technology and Application, 2013, 28(1): 97-102. | |
[16] | 洪亮, 冯亚飞, 彭双云, 等. 面向对象的多尺度加权联合稀疏表示的高空间分辨率遥感影像分类[J]. 测绘学报, 2022, 51(2): 224-237. DOI: 10.11947/j.AGCS.2022.20190290. |
HONG Liang, FENG Yafei, PENG Shuangyun, et al. Classification of high spatial resolution remote sensing imagery based on object-oriented multi-scale weighted sparse representation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 224-237. DOI: 10.11947/j.AGCS.2022.20190290. | |
[17] | YUAN Qiangqiang, SHEN Huanfeng, LI Tongwen, et al. Deep learning in environmental remote sensing: achievements and challenges[J]. Remote Sensing of Environment, 2020, 241: 111716. |
[18] | CHENG Gong, XIE Xingxing, HAN Junwei, et al. Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3735-3756. |
[19] | 陈云浩, 冯通, 史培军, 等. 基于面向对象和规则的遥感影像分类研究[J]. 武汉大学学报(信息科学版), 2006, 31(4): 316-320. |
CHEN Yunhao, FENG Tong, SHI Peijun, et al. Classification of remote sensing image based on object oriented and class rules[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4): 316-320. | |
[20] | 薄树奎, 韩新超, 丁琳. 面向对象影像分类中分割参数的选择[J]. 武汉大学学报(信息科学版), 2009, 34(5): 514-517. |
BO Shukui, HAN Xinchao, DING Lin. Automatic selection of segmentation parameters for object oriented image classification[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 514-517. | |
[21] | SAHA S, ZHAO Shan, ZHU Xiaoxiang. Multitarget domain adaptation for remote sensing classification using graph neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. |
[22] | ZHOU Jie, CUI Ganqu, HU Shengding, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81. |
[23] | 吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(1): 35-68. |
WU Bo, LIANG Xun, ZHANG Shusen, et al. Advances and applications in graph neural network[J]. Chinese Journal of Computers, 2022, 45(1): 35-68. | |
[24] | LIU Ziyu, FENG Ruyi, WANG Lizhe, et al. Dual learning-based graph neural network for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14. |
[25] | 白铂, 刘玉婷, 马驰骋, 等. 图神经网络[J]. 中国科学(数学), 2020, 50(3): 367-384. |
BAI Bo, LIU Yuting, MA Chicheng, et al. Graph neural network[J]. Scientia Sinica (Mathematica), 2020, 50(3): 367-384. | |
[26] | CUI Wei, HE Xin, YAO Meng, et al. Knowledge and spatial pyramid distance-based gated graph attention network for remote sensing semantic segmentation[J]. Remote Sensing, 2021, 13(7): 1312. |
[27] | QIN Anyong, SHANG Zhaowei, TIAN Jinyu, et al. Spectral-spatial graph convolutional networks for semisupervised hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 241-245. |
[28] | YANG Pan, TONG Lei, QIAN Bin, et al. Hyperspectral image classification with spectral and spatial graph using inductive representation learning network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 791-800. |
[29] | HONG Danfeng, GAO Lianru, YAO Jing, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5966-5978. |
[30] | 刘杰, 尚学群, 宋凌云, 等. 图神经网络在复杂图挖掘上的研究进展[J]. 软件学报, 2022, 33(10): 3582-3618. |
LIU Jie, SHANG Xuequn, SONG Lingyun, et al. Progress of graph neural networks on complex graph mining[J]. Journal of Software, 2022, 33(10): 3582-3618. | |
[31] | 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780. |
XU Bingbing, CEN Keting, HUANG Junjie, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780. | |
[32] | 康世泽, 吉立新, 张建朋. 一种基于图注意力网络的异质信息网络表示学习框架[J]. 电子与信息学报, 2021, 43(4): 915-922. |
KANG Shize, JI Lixin, ZHANG Jianpeng. Heterogeneous information network representation learning framework based on graph attention network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 915-922. | |
[33] | CIANO G, ROSSI A, BIANCHINI M, et al. On inductive-transductive learning with graph neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(2): 758-769. |
[34] | HAMILTON W, YING Zhitao, LESKOVEC J. Inductive representation learning on large graphs[J]. Advances in Neural Information Processing Systems, 2017, 30: 1024-1034. |
[35] | DING Yao, ZHAO Xiaofeng, ZHANG Zhili, et al. Graph sample and aggregate-attention network for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. |
[36] | 贾永红, 谢志伟, 吕臻, 等. 一种新的遥感影像变化检测方法[J]. 武汉大学学报(信息科学版), 2016, 41(8): 1001-1006. |
JIA Yonghong, XIE Zhiwei, LÜ Zhen, et al. A new change detection method of remote sensing image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1001-1006. | |
[37] | 佃袁勇, 方圣辉, 姚崇怀. 多尺度分割的高分辨率遥感影像变化检测[J]. 遥感学报, 2016, 20(1): 129-137. |
DIAN Yuanyong, FANG Shenghui, YAO Chonghuai. Change detection for high-resolution images using multilevel segment method[J]. Journal of Remote Sensing, 2016, 20(1): 129-137. | |
[38] | SZABÓ S, GÁCSI Z, BALÁZS B. Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories[J]. Landscape & Environment, 2016, 10(3/4): 194-202. |
[39] | 赵春雷, 钱拴, 黄强, 等. 基于降水量的白洋淀最低水位预测研究[J]. 中国生态农业学报(中英文), 2019, 27(8): 1238-1244. |
ZHAO Chunlei, QIAN Shuan, HUANG Qiang, et al. Prediction of minimum water level in Baiyangdian Lake based on precipitation[J]. Chinese Journal of Eco-Agriculture, 2019, 27(8): 1238-1244. | |
[40] | 季德强, 王海荣, 车淼, 等. KNN-GWD推荐模型及其应用[J]. 应用科学学报, 2022, 40(1): 145-154. |
JI Deqiang, WANG Hairong, CHE Miao, et al. KNN-GWD recommendation model and its application[J]. Journal of Applied Sciences, 2022, 40(1): 145-154. | |
[41] | ZUO Xibing, YU Xuchu, LIU Bing, et al. Graph inductive learning method for small sample classification of hyperspectral remote sensing images[J]. European Journal of Remote Sensing, 2020, 53(1): 349-357. |
[42] | ZHANG Tao, SHAN Haoran, LITTLE M A. Causal GraphSAGE: a robust graph method for classification based on causal sampling[J]. Pattern Recognition, 2022, 128: 108696. |
[43] | YANG Kunping, TONG Xinyi, XIA Guisong, et al. Hidden path selection network for semantic segmentation of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15. |
[44] | DING Lei, TANG Hao, BRUZZONE L. LANet: local attention embedding to improve the semantic segmentation of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 426-435. |
[45] | YU Dawen, JI Shunping. Long-range correlation supervision for land-cover classification from remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-14. |
[46] | WANG Hong, CHEN Xianzhong, ZHANG Tianxiang, et al. CCTNet: coupled CNN and transformer network for crop segmentation of remote sensing images[J]. Remote Sensing, 2022, 14(9): 1956. |
[1] | Chao CHEN, Jintao LIANG, Gang YANG, Weiwei SUN, Shaojun GONG, Jianqiang WANG. Remote sensing parameters optimization for accurate land cover classification [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1401-1416. |
[2] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
[3] | Daifeng PENG, Chenchen ZHAI, Dingwei ZHOU, Yongjun ZHANG, Haiyan GUAN, Yufu ZANG. High-resolution optical images change detection based on global information enhancement by pyramid semantic token [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1195-1211. |
[4] | Jicheng WANG, Anmei GUO, Li SHEN, Tian LAN, Zhu XU, Zhilin LI. Multi-level contrastive learning for weakly supervised extraction of urban solid wastes dump from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1212-1223. |
[5] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
[6] | XUE Zhixiang, YU Xuchu, LIU Jingzheng, YANG Guopeng, LIU Bing, YU Anzhu, ZHOU Jianan, JIN Shanghong. A self-supervised pre-training scheme for multi-source heterogeneous remote sensing image land cover classification [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 512-525. |
[7] | DU Peijun, ZHANG Wei, ZHANG Peng, LIN Cong, GUO Shanchuan, HU Zezhou. A capsule network for hyperspectral image classification employing spatial-spectral feature [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1090-1104. |
[8] | GU Xiaohu, LI Zhengjun, MIAO Jianhao, LI Xinghua, SHEN Huanfeng. Dual-channel parallel hybrid convolutional neural networks based classification method for high-resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 798-807. |
[9] | ZHANG Guangbin, GAO Xianjun, RAN Shuhao, YANG Yuanwei, LI Lishan, ZHANG Yan. Accurate and lightweight cloud detection method based on cloud and snow coexistence region of high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 93-107. |
[10] | WANG Xinshuang, CHEN Erxue, LI Zengyuan, YAO Wanqiang, ZHAO Lei. Multi-temporal and Dual-polarization Interferometric SAR for Land Cover Type Classification [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(5): 533-540. |
[11] | . Built-Up Areas Extraction of High-Resolution Remote Sensing Images by Texture Driven Visual Attention Mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8): 842-847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||