Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (6): 1021-1030.doi: 10.11947/j.AGCS.2025.20240467
• Geodesy and Navigation • Previous Articles Next Articles
Chenxi ZOU1(
), Zhen SHI2(
), Di LIU1, Ziyi YANG1
Received:2024-11-18
Revised:2025-05-14
Online:2025-07-14
Published:2025-07-14
Contact:
Zhen SHI
E-mail:2023126023@chd.edu.cn;shizhen@chd.edu.cn
About author:ZOU Chenxi (2001—), male, postgraduate, majors in precise engineering survey. E-mail: 2023126023@chd.edu.cn
Supported by:CLC Number:
Chenxi ZOU, Zhen SHI, Di LIU, Ziyi YANG. Fiber optic gyroscope total station temperature compensation algorithm based on BP neural network model[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1021-1030.
Tab. 4
Allan variance analysis of ground compensation results"
| 测量位置 | 方法 | 全站仪指向 | 标准差/((°)/s) | Bs/(°) | Q/((°)/s) | N/((°)/ ) |
|---|---|---|---|---|---|---|
| 地面D01→D02 | 原始数据 | 一位置 | 6.3565 | 0.8491 | 0.026 | 0.028 |
| 二位置 | 7.0372 | 0.7392 | 0.033 | 0.021 | ||
| 三位置 | 4.5453 | 0.5679 | 0.023 | 0.011 | ||
| 四位置 | 4.4040 | 0.7304 | 0.023 | 0.009 | ||
| 多项式拟合 | 一位置 | 4.2263 | 0.5466 | 0.016 | 0.010 | |
| 二位置 | 4.8526 | 0.5336 | 0.019 | 0.012 | ||
| 三位置 | 4.0397 | 0.4655 | 0.015 | 0.007 | ||
| 四位置 | 4.1405 | 0.5611 | 0.011 | 0.002 | ||
| BP神经网络 | 一位置 | 1.5580 | 0.3432 | 0.011 | 0.011 | |
| 二位置 | 1.2429 | 0.3184 | 0.009 | 0.004 | ||
| 三位置 | 1.5684 | 0.0277 | 0.006 | 0.006 | ||
| 四位置 | 1.5401 | 0.085 | 0.002 | 0.002 |
Tab. 5
Allan variance analysis of underground compensation results"
| 测量位置 | 方法 | 全站仪指向 | 标准差/((°)/s) | Bs/(°) | Q/((°)/s) | N/((°)/ ) |
|---|---|---|---|---|---|---|
| 井下U01—U02 | 原始数据 | 一位置 | 8.1222 | 0.7164 | 0.045 | 0.02 |
| 二位置 | 8.3995 | 1.9287 | 0.039 | 0.033 | ||
| 三位置 | 4.9398 | 0.7622 | 0.026 | 0.008 | ||
| 四位置 | 4.6054 | 1.0988 | 0.024 | 0.012 | ||
| 多项式拟合 | 一位置 | 4.2263 | 0.5466 | 0.016 | 0.010 | |
| 二位置 | 4.8526 | 0.5336 | 0.033 | 0.021 | ||
| 三位置 | 4.0397 | 0.4655 | 0.023 | 0.011 | ||
| 四位置 | 4.1405 | 0.5611 | 0.023 | 0.009 | ||
| BP神经网络 | 一位置 | 1.0479 | 0.2122 | 0.006 | 0.007 | |
| 二位置 | 1.6776 | 0.3021 | 0.004 | 0.004 | ||
| 三位置 | 1.4497 | 0.0764 | 0.010 | 0.002 | ||
| 四位置 | 1.3682 | 0.192 | 0.003 | 0.001 |
| [1] | 于先文, 薛红琳. 基于光纤陀螺的即插即用式全站仪定向方法[J]. 仪器仪表学报, 2011, 32(6): 1409-1413. |
| YU Xianwen, XUE Honglin. Plug-and-play orientation method of TS based on FOG[J]. Chinese Journal of Scientific Instrument, 2011, 32(6): 1409-1413. | |
| [2] | 宁提纲, 秦曦, 裴丽, 等. 新型保偏光纤温度特性的测试方法[J]. 中国激光, 2006, 33(8): 1078-1080. |
| NING Tigang, QIN Xi, PEI Li, et al. A novel way to measure the temperature characteristic of polarization-maintaining fiber[J]. Chinese Journal of Lasers, 2006, 33(8): 1078-1080. | |
| [3] | 何风平, 李刚毅. 铌酸锂波导调制器的相位漂移机理[J]. 半导体光电, 2007, 28(2): 166-171. |
| HE Fengping, LI Gangyi. Mechanism of the phase-drifting of LiNbO3 optical wave guide modulator[J]. Semiconductor Optoelectronics, 2007, 28(2): 166-171. | |
| [4] | 王晛, 陈剑虹, 杨佳丽, 等. 基于模糊PID控制的InGaAs光电探测器的温控系统[J]. 计算机测量与控制, 2012, 20(6): 1518-1520, 1526. |
| WANG Xian, CHEN Jianhong, YANG Jiali, et al. Temperature control system of InGaAs photoelectric detector based on fuzzy-PID[J]. Computer Measurement & Control, 2012, 20(6): 1518-1520, 1526. | |
| [5] | 李绪友, 杨汉瑞, 杨建华, 等. 光纤耦合器稳定性分析及对光纤陀螺的影响[J]. 中国惯性技术学报, 2010, 18(2): 246-250. |
| LI Xuyou, YANG Hanrui, YANG Jianhua, et al. Analysis of stability of optical fiber coupler splitting ratio and its influence on FOG[J]. Journal of Chinese Inertial Technology, 2010, 18(2): 246-250. | |
| [6] | 罗立成. 光纤陀螺精密温度控制系统的设计及其研究[D]. 哈尔滨: 哈尔滨工程大学, 2011. |
| LUO Licheng. Design and research of fiber optic gyroscope precision temperature control system[D]. Harbin: Harbin Engineering University, 2011. | |
| [7] | 陈永奇, 张春熹, 任卓恒, 等. 光纤陀螺捷联惯导温控系统热仿真技术研究[J]. 系统仿真学报, 2008, 20(4): 1049-1051, 1059. |
| CHEN Yongqi, ZHANG Chunxi, REN Zhuoheng, et al. Thermal simulation technology in temperature control system design of FOG strapdown inertial navigation system[J]. Journal of System Simulation, 2008, 20(4): 1049-1051, 1059. | |
| [8] | 左瑞芹. 光纤陀螺温度补偿技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2006. |
| ZUO Ruiqin. Research on temperature compensation technology of fiber optic gyroscope[D]. Harbin: Harbin Engineering University, 2006. | |
| [9] | 田酉牧. 光纤陀螺温度漂移与补偿方法的研究[D]. 哈尔滨: 哈尔滨工程大学, 2007. |
| TIAN Youmu. Research on temperature drift and compensation method of fiber optic gyroscope[D]. Harbin: Harbin Engineering University, 2007. | |
| [10] | 张艳霞. 光纤陀螺温度漂移建模与补偿[D]. 哈尔滨: 哈尔滨工业大学, 2008. |
| ZHANG Yanxia. Temperature drift modeling and compensation of fiber optic gyroscope[D]. Harbin: Harbin Institute of Technology, 2008. | |
| [11] | 何昌洪. 光纤陀螺及其寻北应用中的信号处理方法研究[D]. 北京: 北京大学, 2013. |
| HE Changhong. Research on signal processing methods of fiber optic gyroscope and its north finding applications[D]. Beijing: Peking University, 2013. | |
| [12] | 骆金辉, 周一览, 刘承, 等. 一种应用于光纤陀螺寻北的温度漂移补偿方法[J]. 光电工程, 2020, 47(11): 190681. |
| LUO Jinhui, ZHOU Yilan, LIU Cheng, et al. A temperature drift compensation method applied to fiber optic gyroscope north-seeking[J]. Opto-Electronic Engineering, 2020, 47(11): 190681. | |
| [13] | 杨萌, 孙强, 尹剑. 基于多项式模型的光纤陀螺温度补偿技术研究[J]. 电子测试, 2016(18): 58-59. |
| YANG Meng, SUN Qiang, YIN Jian. Temperature compensation for fog based on polynomial model[J]. Electronic Test, 2016(18): 58-59. | |
| [14] | 孙英杰. 光纤陀螺温度漂移误差建模及补偿技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
| SUN Yingjie. Research on temperature drift error modeling and compensation technology of fiber optic gyroscope[D]. Harbin: Harbin Institute of Technology, 2010. | |
| [15] | 曹寅. 基于机器学习的光纤陀螺温度误差补偿研究[D]. 北京: 北京交通大学, 2023. |
| CAO Yin. Research on temperature error compensation of fiber optic gyroscope based on machine learning[D]. Beijing: Beijing Jiaotong University, 2023. | |
| [16] | 罗超, 孙枫, 刘广哲. 基于BP神经网络的光纤陀螺零偏温度补偿[J]. 弹箭与制导学报, 2005, 25(2): 104-106, 109. |
| LUO Chao, SUN Feng, LIU Guangzhe. Bias temperature compensation for fiber optic gyro based on BP neural network[J]. Journal of Projectiles Rockets Missiles and Guidance, 2005, 25(2): 104-106, 109. | |
| [17] | 刘元元, 杨功流, 李思宜. BP-AdaBoost模型在光纤陀螺零偏温度补偿中的应用[J]. 北京航空航天大学学报, 2014, 40(2): 235-239. |
| LIU Yuanyuan, YANG Gongliu, LI Siyi. Application of BP-AdaBoost model in temperature compensation for fiber optic gyroscope bias[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 235-239. | |
| [18] | 仇海涛, 徐梦桐, 刘伟, 等. 基于ACO-BP神经网络的光纤陀螺温度补偿方法研究[J]. 电光与控制, 2023, 30(7): 78-81, 118. |
| QIU Haitao, XU Mengtong, LIU Wei, et al. Research on temperature compensation method of fiber optic gyroscope based on ACO-BP neural network[J]. Electronics Optics & Control, 2023, 30(7): 78-81, 118. | |
| [19] | 顾春雷, 陆金桂, 王怡祖, 等. 基于GA-BP神经网络的光纤陀螺温度补偿[J]. 仪表技术与传感器, 2018(3): 113-116. |
| GU Chunlei, LU Jingui, WANG Yizu, et al. Temperature compensation of FOG based on GA-BP neural network[J]. Instrument Technique and Sensor, 2018(3): 113-116. | |
| [20] | 张红线, 吴衍记, 王玉辉, 等. 基于模糊逻辑的光纤陀螺温度补偿技术[J]. 中国惯性技术学报, 2007, 15(3): 343-346. |
| ZHANG Hongxian, WU Yanji, WANG Yuhui, et al. Temperature compensation for FOG based on fuzzy logic[J]. Journal of Chinese Inertial Technology, 2007, 15(3): 343-346. | |
| [21] | 钱峰, 田蔚风, 杨艳娟, 等. 基于受控马氏链的干涉型光纤陀螺温度漂移模型[J]. 光电子·激光, 2003, 14(7): 705-708. |
| QIAN Feng, TIAN Weifeng, YANG Yanjuan, et al. A model on temperature drift of interference fiber optical gyros based on controlled Markov chain[J]. Journal of Optoelectronics Laser, 2003, 14(7): 705-708. | |
| [22] | 韩冰, 林玉荣, 邓正隆. 光纤陀螺温度漂移误差的建模与补偿综述[J]. 中国惯性技术学报, 2009, 17(2): 218-224. |
| HAN Bing, LIN Yurong, DENG Zhenglong. Overview on modeling and compensation of FOG temperature drift[J]. Journal of Chinese Inertial Technology, 2009, 17(2): 218-224. | |
| [23] | 长安大学. 一种光纤陀螺定向仪: CN202210368984.3[P]. 2024-05-03. |
| Chang'an University. A fiber optic gyroscope orientation instrument: CN202210368984.3[P]. 2024-05-03. | |
| [24] | 蔡迎波, 乔永严. 单轴光纤陀螺寻北仪四位置寻北误差分析[J]. 光学与光电技术, 2017, 15(6): 84-88. |
| CAI Yingbo, QIAO Yongyan. Four position north seeking error analysis for single-axis FOG north-seeker[J]. Optics & Optoelectronic Technology, 2017, 15(6): 84-88. | |
| [25] | SHUPE D M. Thermally induced nonreciprocity in the fiber-optic interferometer[J]. Applied Optics, 1980, 19(5): 654-655. |
| [26] | 朱辉, 岑松原, 王冬云, 等. 光纤环的应力测试分析[J]. 光学仪器, 2004, 26(4): 3-6. |
| ZHU Hui, CEN Songyuan, WANG Dongyun, et al. Measurement and analysis about the strain of fiber opitical loop[J]. Optical Instruments, 2004, 26(4): 3-6. | |
| [27] | ALLAN D W. Statistics of atomic frequency standards[J]. Proceedings of the IEEE, 1966, 54(2): 221-230. |
| [28] | BERNIER L G. Theoretical analysis of the modified allan variance[C]//Proceedings of the 41st Annual Symposium on Frequency Control. Philadelphia: IEEE, 2005: 116-121. |
| [29] | 席绪奇, 姚志成, 何志昆, 等. 基于多项式模型和BP神经网络的光纤陀螺温度补偿[J]. 计算机应用与软件, 2013, 30(11): 54-56. |
| XI Xuqi, YAO Zhicheng, HE Zhikun, et al. Temperature compensation for fog based on polynomial model and BP neural network[J]. Computer Applications and Software, 2013, 30(11): 54-56. | |
| [30] | 袁曾任. 人工神经元网络及其应用[M]. 北京: 清华大学出版社, 1999. |
| YUAN Zengren. Artificial neural network and its applications[M]. Beijing: Tsinghua University Press, 1999. | |
| [31] | LI Xiang, HUA Yixin, LIU Wenbing. A method of road data aided inertial navigation by using learning to rank and ICCP algorithm[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 84-96. |
| [32] |
靳凯迪, 柴洪洲, 宿楚涵, 等. 顾及有色噪声的光纤陀螺随机噪声自适应滤波方法[J]. 测绘学报, 2022, 51(1): 80-86. DOI: .
doi: 10.11947/j.AGCS.2022.20200614 |
|
JIN Kaidi, CHAI Hongzhou, SU Chuhan, et al. Adaptive Kalman filter method with colored noise for fiber optic gyroscope random drift[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 80-86. DOI: .
doi: 10.11947/j.AGCS.2022.20200614 |
|
| [33] |
王峥, 李建成. 航空矢量重力测量中光纤陀螺随机漂移误差实时补偿方法[J]. 测绘学报, 2017, 46(2): 144-150. DOI: .
doi: 10.11947/j.AGCS.2017.20160174 |
|
WANG Zheng, LI Jiancheng. Research on the real-time compensation of the fiber optic gyroscope random drift in airborne vector gravimetry[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 144-150. DOI: .
doi: 10.11947/j.AGCS.2017.20160174 |
| [1] | Yiruo LIN, Kegen YU, Feiyang ZHU, Jinwei BU. A RSSI ranging algorithm based on GWO-BP neural network [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1564-1573. |
| [2] | Mengyao WANG, Shubi ZHANG, Wenyuan ZHANG, Yang LIU. MODIS PWV neural network differential correction model integrating multiple nonlinear factors [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2138-2148. |
| [3] | JIN Kaidi, CHAI Hongzhou, SU Chuhan, XIANG Minzhi. Adaptive Kalman filter method with colored noise for fiber optic gyroscope random drift [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 80-86. |
| [4] | LÜ Dong, OU Jikun, YU Shengwen. Prediction of the satellite clock bias based on MEA-BP neural network [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8): 993-1003. |
| [5] | LI Jiatian, WANG Congcong, A Xiaohui, YAN Ling, ZHU Zhihao, GAO Peng. Method of close-range space intersection combining multi-image forward intersection with single hidden layer neural network [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 736-745. |
| [6] | WANG Zheng, LI Jiancheng. Research on the Real-time Compensation of the Fiber Optic Gyroscope Random Drift in Airborne Vector Gravimetry [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 144-150. |
| [7] | ZHANG Xiaohong, CHEN Xinghan, GUO Fei. High-performance Atomic Clock Modeling and Its Application in Precise Point Positioning [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4): 392-398. |
| [8] | ZHANG Xiaohong, ZHU Feng, XUE Xueming, TANG Long. Using Allan Variance to Analyze the Zero-differenced Stochastic Model Characteristics of GPS [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2): 119-127. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||