Acta Geodaetica et Cartographica Sinica ›› 2017, Vol. 46 ›› Issue (10): 1327-1335.doi: 10.11947/j.AGCS.2017.20170336
Previous Articles Next Articles
CHENG Pengfei, CHENG Yingyan
Received:
2017-06-25
Revised:
2017-09-05
Online:
2017-10-20
Published:
2017-10-26
Supported by:
CLC Number:
CHENG Pengfei, CHENG Yingyan. The Current Status and Tendency of China Millimeter Coordinate Frame Implementation and Maintenance[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1327-1335.
[1] 程鹏飞, 成英燕, 秘金钟, 等. 2000国家大地坐标系建立的理论与方法[M]. 北京:测绘出版社, 2014. CHENG Pengfei, CHENG Yingyan, BEI Jinzhong, et al. Theory and Method for Establishment of the China Geodetic Coordinate System 2000[M]. Beijing:Surveying and Mapping Press, 2014. [2] 程鹏飞, 文汉江, 孙罗庆, 等. 中国大陆GPS速度场的球面小波模型及多尺度特征分析[J]. 测绘学报, 2015, 44(10):1063-1070. DOI:10.11947/j.AGCS.20152.0140141. CHENG Pengfei, WEN Hanjiang, SUN Luoqing, et al. The Spherical Wavelet Model and Multiscale Analysis of Characteristics of GPS Velocity Fields in Mainland China[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10):1063-1070. DOI:10.11947/j.AGCS.20152.0140141. [3] 程鹏飞, 成英燕, 秘金钟, 等. CGCS2000板块模型构建[J]. 测绘学报, 2013, 42(2):159-167. CHENG Pengfei, CHENG Yingyan, BEI Jinzhong, et al. CGCS2000 Plate Motion Model[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2):159-167. [4] 程鹏飞, 文汉江, 成英燕, 等. 2000国家大地坐标系椭球参数与GRS 80和WGS 84的比较[J]. 测绘学报, 2009, 38(3):189-194. DOI:10.3321/j.issn:1001-1595.2009.03.001. CHENG Pengfei, WEN Hanjiang, CHENG Yingyan, et al. Parameters of the CGCS 2000 Ellipsoid and Comparisons with GRS 80 and WGS 84[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(3):189-194. DOI:10.3321/j.issn:1001-1595.2009.03.001. [5] 程鹏飞, 成英燕, 秘金钟, 等. 国家大地坐标系建立的理论与实践[M]. 北京:测绘出版社, 2017. CHENG Pengfei, CHENG Yingyan, BEI Jinzhong, et al. Theory and Practice for Establishment of National Geodetic Coordinate System[M]. Beijing:Surveying and Mapping Press, 2017. [6] CHEN J L, WILSON C R, EANES R J, et al. Geophysical Interpretation of Observed Geocenter Variations[J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B2):2683-2690. [7] BLEWITT G, HEFLIN M B, WEBB F H, et al. Global Coordinates with Centimeter Accuracy in the International Terrestrial Reference Frame Using GPS[J]. Geophysical Research Letters, 1992, 19(9):853-856. [8] DONG D, YUNCK T, HEFLIN M. Origin of the International Terrestrial Reference Frame[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B4):2200. DOI:10.1029/2002JB002035. [9] COLLILIEUX X, ALTAMIMI Z, RAY J, et al. Effect of the Satellite Laser Ranging Network Distribution on Geocenter Motion Estimation[J]. Journal of Geophysical Research:Solid Earth, 2009, 114(B4):B04402. [10] ALTAMIMI Z, COLLILIEUX X, MÉTIVIER L. ITRF2008:An Improved Solution of the International Terrestrial Reference Frame[J]. Journal of Geodesy, 2011, 85(8):457-473. [11] CRÉTAUX J F, SOUDARIN L, DAVIDSON F J M, et al. Seasonal and Interannual Geocenter Motion from SLR and DORIS Measurements:Comparison with Surface Loading Data[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B12):ETG 16-1-ETG 16-9. [12] KANG Z G, TAPLEY B, CHEN J L, et al. Geocenter Variations Derived from GPS Tracking of the GRACE Satellites[J]. Journal of Geodesy, 2009, 83(10):895-901. [13] REBISCHUNG P, GARAYT B. Recent Results from the IGS Terrestrial Frame Combinations[C]//ALTAMIMI Z, COLLILIEUX X. Reference Frames for Applications in Geosciences. International Association of Geodesy Symposia, Vol 138. Berlin, Heidelberg:Springer, 2013. [14] TREGONING P, VAN DAM T. Effects of Atmospheric Pressure Loading and Seven-parameter Transformations on Estimates of Geocenter Motion and Station Heights from Space Geodetic Observations[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B3):B03408. DOI:10.1029/2004JB003334. [15] SWENSON S, CHAMBERS D, WAHR J. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output[J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B8):B08410. DOI:10.1029/2007JB005338. [16] SCHERNECK H G, JOHANSSON J M, WEBB F H. Ocean Loading Tides in GPS and Rapid Variations of the Frame Origin[C]//Geodesy Beyond 2000-the Challenges in the First Decade, Vol. 121. Berlin:Schwarz, Springer, 2000. [17] KLEMANN V, MARTINEC Z. Contribution of Glacial-isostatic Adjustment to the Geocenter Motion[J]. Tectonophysics, 2009, 511(3-4):99-108. DOI:10.1016/j.tecto.2009.08.031. [18] DONG Danan, QU Weijing, FANG Peng, et al. Non-linearity of Geocentre Motion and Its Impact on the Origin of the Terrestrial Reference Frame[J]. Geophysical Journal International, 2014, 198(2):1071-1080. DOI:10.1093/gji/ggu187. [19] BLEWITT G, LAVALLÉE D, CLARKE P, et al. A New Global Mode of Earth Deformation:Seasonal Cycle Detected[J]. Science, 2001, 294(5550):2342-2345. DOI:10.1126/science.1065328. [20] WU Xiaoping, ARGUS D F, HEFLIN M B, et al. Site Distribution and Aliasing Effects in the Inversion for Load Coefficients and Geocenter Motion from GPS Data[J]. Geophysical Research Letters, 2002, 29(24):63-1-63-4. DOI:10.1029/2002GL016324. [21] WU Xiaoping, HEFLIN M B, IVINS E R, et al. Large-scale Global Surface Mass Variations Inferred from GPS Measurements of Load-Induced Deformation[J]. Geophysical Research Letters, 2003, 30(14):1742. DOI:10.1029/2003GL017546. [22] LAVALLÉE D A, VAN DAM T, BLEWITT G, et al. Geocenter Motions from GPS:A Unified Observation Model[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B5):B05405. DOI:10.1029/2005JB003784 [23] CLARKE P J, LAVALLÉE D A, BLEWITT G, et al. Basis Functions for the Consistent and Accurate Representation of Surface Mass Loading[J]. Geophysical Journal International, 2007, 171(1):1-10. DOI:10.1111/j.1365-246X.2007.03493.x. [24] WU Xiaoping, RAY J, VAN DAM T. Geocenter Motion and Its Geodetic and Geophysical Implications[J]. Journal of Geodynamics, 2012(58):44-61. [25] YU Nan, CHENG Pengfei, CHENG Yingyan, et al. The Geocentre Inversion Based on the Global Climate Models and GPS Site Displacements[J]. Survey Review, 2017:1-9. DOI:10.1080/00396265.2017.1329077. [26] KUSCHE J, SCHRAMA E J O. Surface Mass Redistribution Inversion from Global GPS Deformation and Gravity Recovery and Climate Experiment (GRACE) Gravity Data[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B9):B09409. DOI:10.1029/2004JB003556. [27] WU Xiaoping, HEFLIN M B, IVINS E R, et al. Seasonal and Interannual Global Surface Mass Variations from Multisatellite Geodetic Data[J]. Journal of Geophysical Research, 2006, 111(B9):B09401. [28] 宋淑丽, 朱文耀, 熊福文, 等. 毫米级地球参考框架的构建[J]. 地球物理学报, 2009, 52(11):2704-2711. SONG Shuli, ZHU Wenyao, XIONG Fuwen, et al. Construction of mm-Level Terrestrial Reference Frame[J]. Chinese Journal of Geophysics, 2009, 52(11):2704-2711. [29] 姜卫平, 李昭, 刘鸿飞, 等. 中国区域IGS基准站坐标时间序列非线性变化的成因分析[J]. 地球物理学报, 2013, 56(7):2228-2237. JIANG Weiping, LI Zhao, LIU Hongfei, et al. Cause Analysis of the Non-Linear Variation of the IGS Reference Station Coordinate Time Series Inside China[J]. Chinese Journal of Geophysics, 2013, 56(7):2228-2237. [30] WANG Xiaoming, CHENG Yingyan, WU Suqin, et al. An Enhanced Singular Spectrum Analysis Method for Constructing Nonsecular Model of GPS Site Movement[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(3):2193-2211. [31] WANG Xiaoming, CHENG Yingyan, WU Suqin, et al. An Effective Toolkit for the Interpolation and Gross Error Detection of GPS Time Series[J]. Survey Review, 2016, 48(348):202-211. |
[1] | JIANG Weiping, LI Zhao, WEI Na, LIU Jingnan. Progress and thoughts on establishment of geodetic coordinate frame [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1259-1270. |
[2] | WANG Ke, LIU Guolin, FU Zhengqing, WANG Luyao. A separable nonlinear least squares solution method based on Moore-Penrose generalized inverse and solid matrix [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 340-350. |
[3] | WANG Leyang, LI Zhiqiang. Bootstrap method and the modified method based on weighted sampling for nonlinear model precision estimation [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 863-878. |
[4] | FAN Diao, LI Shanshan, OUYANG Yongzhong, MENG Shuyu, CHEN Cheng, XING Zhibin, ZHANG Chi. Seafloor topography inversion using least square collocation considering nonlinear term [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 953-971. |
[5] | HU Chuan, FANG Xing, ZHAO Lidu. Nonlinear equality constrained total least squares adjustment combined with orthogonal geometry information and its iterative algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 816-823. |
[6] | ZHANG Hengjing, CUI Dongdong, CHENG Pengfei. Height nonlinear velocity field and variance fluctuation model construction method for CORS stations [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1096-1106. |
[7] | WEI Ziqing, WU Fumei, LIU Guangming. The BeiDou coordinate system [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 805-809. |
[8] | ZONG Jingwen, LI Houpu, BIAN Shaofeng, TANG Qinghui. Symbolic expressions of differences between earth radius [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 238-244. |
[9] | FU Yanbo, SUN Fuping, ZHU Xinhui, LIU Jing. Establishment of Statistical Correction Model for Vertical Annual Variations of Global GPS Stations [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10): 1337-1345. |
[10] | JIANG Dawei, FAN Jianchao, HUANG Fengrong. SAR Image Coastline Detection Based on Regional Distance Regularized Geometric Active Contour Models [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9): 1096-1103. |
[11] | ZENG Wenxian, FANG Xing, LIU Jingnan, YAO Yibin. Weighted Total Least Squares of Universal EIV Adjustment Model [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8): 890-894. |
[12] | YANG Yuanxi, LU Mingquan, HAN Chunhao. Some Notes on Interoperability of GNSS [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 253-259. |
[13] | FANG Xing, ZENG Wenxian, LIU Jingnan, YAO Yibin, WANG Yong. Mixed LS-TLS Estimation Based on Nonlinear Gauss-Helmert Model [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 291-296. |
[14] | LI Hui, ZHANG Jinqu, CAO Yang, WANG Xingfang. Nonlinear Spectral Unmixing for Optimizing Per-pixel Endmember Sets [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1): 80-86. |
[15] | ZHU Jianjun, FAN Donghao, ZHOU Cui, ZHOU Jinghong. Nonlinear Adjustment Model with Integral and Its Application to Super Resolution Image Reconstruction [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7): 747-752. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1046
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 962
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||