Acta Geodaetica et Cartographica Sinica ›› 2017, Vol. 46 ›› Issue (10): 1327-1335.doi: 10.11947/j.AGCS.2017.20170336
Previous Articles Next Articles
CHENG Pengfei, CHENG Yingyan
Received:2017-06-25
Revised:2017-09-05
Online:2017-10-20
Published:2017-10-26
Supported by:CLC Number:
CHENG Pengfei, CHENG Yingyan. The Current Status and Tendency of China Millimeter Coordinate Frame Implementation and Maintenance[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1327-1335.
| [1] 程鹏飞, 成英燕, 秘金钟, 等. 2000国家大地坐标系建立的理论与方法[M]. 北京:测绘出版社, 2014. CHENG Pengfei, CHENG Yingyan, BEI Jinzhong, et al. Theory and Method for Establishment of the China Geodetic Coordinate System 2000[M]. Beijing:Surveying and Mapping Press, 2014. [2] 程鹏飞, 文汉江, 孙罗庆, 等. 中国大陆GPS速度场的球面小波模型及多尺度特征分析[J]. 测绘学报, 2015, 44(10):1063-1070. DOI:10.11947/j.AGCS.20152.0140141. CHENG Pengfei, WEN Hanjiang, SUN Luoqing, et al. The Spherical Wavelet Model and Multiscale Analysis of Characteristics of GPS Velocity Fields in Mainland China[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10):1063-1070. DOI:10.11947/j.AGCS.20152.0140141. [3] 程鹏飞, 成英燕, 秘金钟, 等. CGCS2000板块模型构建[J]. 测绘学报, 2013, 42(2):159-167. CHENG Pengfei, CHENG Yingyan, BEI Jinzhong, et al. CGCS2000 Plate Motion Model[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2):159-167. [4] 程鹏飞, 文汉江, 成英燕, 等. 2000国家大地坐标系椭球参数与GRS 80和WGS 84的比较[J]. 测绘学报, 2009, 38(3):189-194. DOI:10.3321/j.issn:1001-1595.2009.03.001. CHENG Pengfei, WEN Hanjiang, CHENG Yingyan, et al. Parameters of the CGCS 2000 Ellipsoid and Comparisons with GRS 80 and WGS 84[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(3):189-194. DOI:10.3321/j.issn:1001-1595.2009.03.001. [5] 程鹏飞, 成英燕, 秘金钟, 等. 国家大地坐标系建立的理论与实践[M]. 北京:测绘出版社, 2017. CHENG Pengfei, CHENG Yingyan, BEI Jinzhong, et al. Theory and Practice for Establishment of National Geodetic Coordinate System[M]. Beijing:Surveying and Mapping Press, 2017. [6] CHEN J L, WILSON C R, EANES R J, et al. Geophysical Interpretation of Observed Geocenter Variations[J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B2):2683-2690. [7] BLEWITT G, HEFLIN M B, WEBB F H, et al. Global Coordinates with Centimeter Accuracy in the International Terrestrial Reference Frame Using GPS[J]. Geophysical Research Letters, 1992, 19(9):853-856. [8] DONG D, YUNCK T, HEFLIN M. Origin of the International Terrestrial Reference Frame[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B4):2200. DOI:10.1029/2002JB002035. [9] COLLILIEUX X, ALTAMIMI Z, RAY J, et al. Effect of the Satellite Laser Ranging Network Distribution on Geocenter Motion Estimation[J]. Journal of Geophysical Research:Solid Earth, 2009, 114(B4):B04402. [10] ALTAMIMI Z, COLLILIEUX X, MÉTIVIER L. ITRF2008:An Improved Solution of the International Terrestrial Reference Frame[J]. Journal of Geodesy, 2011, 85(8):457-473. [11] CRÉTAUX J F, SOUDARIN L, DAVIDSON F J M, et al. Seasonal and Interannual Geocenter Motion from SLR and DORIS Measurements:Comparison with Surface Loading Data[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B12):ETG 16-1-ETG 16-9. [12] KANG Z G, TAPLEY B, CHEN J L, et al. Geocenter Variations Derived from GPS Tracking of the GRACE Satellites[J]. Journal of Geodesy, 2009, 83(10):895-901. [13] REBISCHUNG P, GARAYT B. Recent Results from the IGS Terrestrial Frame Combinations[C]//ALTAMIMI Z, COLLILIEUX X. Reference Frames for Applications in Geosciences. International Association of Geodesy Symposia, Vol 138. Berlin, Heidelberg:Springer, 2013. [14] TREGONING P, VAN DAM T. Effects of Atmospheric Pressure Loading and Seven-parameter Transformations on Estimates of Geocenter Motion and Station Heights from Space Geodetic Observations[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B3):B03408. DOI:10.1029/2004JB003334. [15] SWENSON S, CHAMBERS D, WAHR J. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output[J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B8):B08410. DOI:10.1029/2007JB005338. [16] SCHERNECK H G, JOHANSSON J M, WEBB F H. Ocean Loading Tides in GPS and Rapid Variations of the Frame Origin[C]//Geodesy Beyond 2000-the Challenges in the First Decade, Vol. 121. Berlin:Schwarz, Springer, 2000. [17] KLEMANN V, MARTINEC Z. Contribution of Glacial-isostatic Adjustment to the Geocenter Motion[J]. Tectonophysics, 2009, 511(3-4):99-108. DOI:10.1016/j.tecto.2009.08.031. [18] DONG Danan, QU Weijing, FANG Peng, et al. Non-linearity of Geocentre Motion and Its Impact on the Origin of the Terrestrial Reference Frame[J]. Geophysical Journal International, 2014, 198(2):1071-1080. DOI:10.1093/gji/ggu187. [19] BLEWITT G, LAVALLÉE D, CLARKE P, et al. A New Global Mode of Earth Deformation:Seasonal Cycle Detected[J]. Science, 2001, 294(5550):2342-2345. DOI:10.1126/science.1065328. [20] WU Xiaoping, ARGUS D F, HEFLIN M B, et al. Site Distribution and Aliasing Effects in the Inversion for Load Coefficients and Geocenter Motion from GPS Data[J]. Geophysical Research Letters, 2002, 29(24):63-1-63-4. DOI:10.1029/2002GL016324. [21] WU Xiaoping, HEFLIN M B, IVINS E R, et al. Large-scale Global Surface Mass Variations Inferred from GPS Measurements of Load-Induced Deformation[J]. Geophysical Research Letters, 2003, 30(14):1742. DOI:10.1029/2003GL017546. [22] LAVALLÉE D A, VAN DAM T, BLEWITT G, et al. Geocenter Motions from GPS:A Unified Observation Model[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B5):B05405. DOI:10.1029/2005JB003784 [23] CLARKE P J, LAVALLÉE D A, BLEWITT G, et al. Basis Functions for the Consistent and Accurate Representation of Surface Mass Loading[J]. Geophysical Journal International, 2007, 171(1):1-10. DOI:10.1111/j.1365-246X.2007.03493.x. [24] WU Xiaoping, RAY J, VAN DAM T. Geocenter Motion and Its Geodetic and Geophysical Implications[J]. Journal of Geodynamics, 2012(58):44-61. [25] YU Nan, CHENG Pengfei, CHENG Yingyan, et al. The Geocentre Inversion Based on the Global Climate Models and GPS Site Displacements[J]. Survey Review, 2017:1-9. DOI:10.1080/00396265.2017.1329077. [26] KUSCHE J, SCHRAMA E J O. Surface Mass Redistribution Inversion from Global GPS Deformation and Gravity Recovery and Climate Experiment (GRACE) Gravity Data[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B9):B09409. DOI:10.1029/2004JB003556. [27] WU Xiaoping, HEFLIN M B, IVINS E R, et al. Seasonal and Interannual Global Surface Mass Variations from Multisatellite Geodetic Data[J]. Journal of Geophysical Research, 2006, 111(B9):B09401. [28] 宋淑丽, 朱文耀, 熊福文, 等. 毫米级地球参考框架的构建[J]. 地球物理学报, 2009, 52(11):2704-2711. SONG Shuli, ZHU Wenyao, XIONG Fuwen, et al. Construction of mm-Level Terrestrial Reference Frame[J]. Chinese Journal of Geophysics, 2009, 52(11):2704-2711. [29] 姜卫平, 李昭, 刘鸿飞, 等. 中国区域IGS基准站坐标时间序列非线性变化的成因分析[J]. 地球物理学报, 2013, 56(7):2228-2237. JIANG Weiping, LI Zhao, LIU Hongfei, et al. Cause Analysis of the Non-Linear Variation of the IGS Reference Station Coordinate Time Series Inside China[J]. Chinese Journal of Geophysics, 2013, 56(7):2228-2237. [30] WANG Xiaoming, CHENG Yingyan, WU Suqin, et al. An Enhanced Singular Spectrum Analysis Method for Constructing Nonsecular Model of GPS Site Movement[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(3):2193-2211. [31] WANG Xiaoming, CHENG Yingyan, WU Suqin, et al. An Effective Toolkit for the Interpolation and Gross Error Detection of GPS Time Series[J]. Survey Review, 2016, 48(348):202-211. |
| [1] | Zhen LI, Zhenghang HE, Chuang SHI. A high-degree gravitational potential and gradient calculation method without singularities [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1572-1582. |
| [2] | Shunqiang HU, Kejie CHEN, Xiaoxing HE, Hai ZHU, Tan WANG. The impact of environmental loading on nonlinear variations of 3D coordinate time series of GNSS stations in Sichuan and Yunnan region [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 805-818. |
| [3] | Yating LIU, Chuanfa CHEN, Qingxin HE, Kunyu LI. Landslide susceptibility evaluation considering positive and negative sample optimization [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 308-320. |
| [4] | CAO Fanzhi, SHI Tianxin, HAN Kaiyang, WANG Pu, AN Wei. Log-Gabor filter-based high-precision multi-modal remote sensing image matching [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 526-536. |
| [5] | Chuan HU, Zonghao SHI, Daqin REN. On homotopy method to parameter estimation for generalized nonlinear Gauss-Helmert model [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2178-2188. |
| [6] | LI Junyu, YAO Yibin, LIU Lilong, ZHANG Bao, HUANG Liangke, CAO Liying. A predicting ZWD model based on multi-source data and generalized regression neural network [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1492-1503. |
| [7] | KUANG Yingcai, Lü Zhiping, LI Linyang, WANG Fangchao, XU Guochang. Dynamic nolinear Gauss-Helmert model and its robust total Kalman filter algorithm for GNSS-acoustic underwater positioning [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 559-570. |
| [8] | BIAN Hongwei, WEN Zhe, MA Heng, WANG Rongying. Simplification and analysis of IMU conversion error formula for inertial navigation polar simulation test [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9): 1890-1898. |
| [9] | JIANG Weiping, LI Zhao, WEI Na, LIU Jingnan. Progress and thoughts on establishment of geodetic coordinate frame [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1259-1270. |
| [10] | WANG Ke, LIU Guolin, FU Zhengqing, WANG Luyao. A separable nonlinear least squares solution method based on Moore-Penrose generalized inverse and solid matrix [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 340-350. |
| [11] | WANG Leyang, CHEN Tao. The SUT method for precision estimation of mixed additive and multiplicative random error model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2303-2316. |
| [12] | WANG Luyao, LIU Guolin, WANG Fengyun, WANG Ke, HAN Yu. The method and application for solving separable nonlinear least squares based on matrix decomposition [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2317-2327. |
| [13] | WANG Leyang, LI Zhiqiang. Bootstrap method and the modified method based on weighted sampling for nonlinear model precision estimation [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 863-878. |
| [14] | FAN Diao, LI Shanshan, OUYANG Yongzhong, MENG Shuyu, CHEN Cheng, XING Zhibin, ZHANG Chi. Seafloor topography inversion using least square collocation considering nonlinear term [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 953-971. |
| [15] | HU Chuan, FANG Xing, ZHAO Lidu. Nonlinear equality constrained total least squares adjustment combined with orthogonal geometry information and its iterative algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 816-823. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||