[1] CAMPS-VALLS G, BRUZZONE L. Kernel-based methods for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6):1351-1362. [2] 唐中奇, 付光远, 陈进, 等. 基于多尺度分割的高光谱图像稀疏表示与分类[J]. 光学精密工程, 2015, 23(9):2708-2714. TANG Zhongqi, FU Guangyuan, CHEN Jin, et al. Multiscale segmentation-based sparse coding for hyperspectral image classification[J]. Optics and Precision Engineering, 2015, 23(9):2708-2714. [3] DÓPIDO I, LI Jun, MARPU P R, et al. Semisupervised self-learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7):4032-4044. [4] 田彦平, 陶超, 邹峥嵘, 等. 主动学习与图的半监督相结合的高光谱影像分类[J]. 测绘学报, 2015, 44(8):919-926. DOI:10.11947/j.AGCS.2015.20140221. TIAN Yanping, TAO Chao, ZOU Zhengrong, et al. Semi-supervised graph-based hyperspectral image classification with active learning[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(8):919-926. DOI:10.11947/j.AGCS.2015.20140221. [5] CHEN Yushi, LIN Zhouhan, ZHAO Xing, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107. [6] HU Wei, HUANG Yangyu, LI Wei, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015(7):220-231. [7] CHEN Yushi, ZHAO Xing, JIA Xiuping. Spectral-spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2381-2392. [8] MOU Lichao, GHAMISI P, ZHU Xiaoxiang. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3639-3655. [9] YUE Jun, ZHAO Wenzhi, MAO Shanjun, et al. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks[J]. Remote Sensing Letters, 2015, 6(6):468-477. [10] YUE Jun, MAO Shanjun, LI Mei. A deep learning framework for hyperspectral image classification using spatial pyramid pooling[J]. Remote Sensing Letters, 2016, 7(9):875-884. [11] GHAMISI P, CHEN Yushi, ZHU Xiaoxiang. A self-improving convolution neural network for the classification of hyperspectral data[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10):1537-1541. [12] MEI Shaohui, JI Jingyu, HOU Junhui, et al. Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8):4520-4533. [13] LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Supervised deep feature extraction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4):1909-1921. [14] LIU Peng, ZHANG Hui, EOM K B. Active deep learning for classification of hyperspectral images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(2):712-724. [15] LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. A semi-supervised convolutional neural network for hyperspectral image classification[J]. Remote Sensing Letters, 2017, 8(9):839-848. [16] JIAO Licheng, LIANG Miaomiao, CHEN Huan, et al. Deep fully convolutional network-based spatial distribution prediction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5585-5599. [17] JI Shuiwang, XU Wei, YANG Ming, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):221-231. [18] 尹宝才, 王文通, 王立春. 深度学习研究综述[J]. 北京工业大学学报, 2015, 41(1):48-59. YIN Baocai, WANG Wentong, WANG Lichun. Review of deep learning[J]. Journal of Beijing University of Technology, 2015, 41(1):48-59. [19] HE Kaiming, ZHANG Xianyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:770-778. [20] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. Haifa:Omnipress, 2010:807-814. [21] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe:Curran Associates Inc, 2012:1097-1105. [22] 黄鸿, 郑新磊. 高光谱影像空-谱协同嵌入的地物分类算法[J]. 测绘学报, 2016, 45(8):964-972. DOI:10.11947/j.AGCS.2016.20150654. HUANG Hong, ZHENG Xinlei. Hyperspectral image land cover classification algorithm based on spatial-spectral coordination embedding[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8):964-972. DOI:10.11947/j.AGCS.2016.20150654. [23] 张春森, 郑艺惟, 黄小兵, 等. 高光谱影像光谱-空间多特征加权概率融合分类[J]. 测绘学报, 2015, 44(8):909-918. DOI:10.11947/j.AGCS.2015.20140544. ZHANG Chunsen, ZHENG Yiwei, HUANG Xiaobing, et al. Hyperspectral image classification based on the weighted probabilistic fusion of multiple spectral-spatial features[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(8):909-918. DOI:10.11947/j.AGCS.2015.20140544. [24] LI Wei, WU Guodong, ZHANG Fan, et al. Hyperspectral image classification using deep pixel-pair features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2):844-853. [25] BENEDIKTSSON J A, PALMASON J A, SVEINSSON J R. Classification of hyperspectral data from urban areas based on extended morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):480-491. DOI:10.1109/TGRS.2004.842478. [26] KINGMA D P, BA J. ADAM:A method for Stochastic optimization[R]. The 3rd International Conference for Learning Representations. San Diego:[s.n.], 2015. [27] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1):1929-1958. |