[1] DELUCIA A A, BLACK R T. A comprehensive approach to automatic feature generalization[C]. Proceedings of the 13th Conference of the International Cartographic Conference. Morelia, Mexico:[s.n.], 1987(4):169-192. [2] LI Zhilin. Algorithmic foundation of multi-scale spatial representation[M]. Bacon Raton:CRC Press, 2007. [3] 王家耀, 李志林, 武芳. 数字地图综合进展[M]. 北京:科学出版社, 2011. WANG Jiayao, LI Zhilin, WU Fang. Advances in digital map generalization[M]. Beijing:Science Press, 2011. [4] 艾廷华, 郭宝辰, 黄亚峰. 1:5万地图数据库的计算机综合缩编[J]. 武汉大学学报(信息科学版), 2005, 30(4):297-300. AI Tinghua, GUO Baochen, HUANG Yafeng. Construction of 1:50000 map database by computer generalization method[J]. Geomatics and Information Science of Wuhan University, 2005, 30(4):297-300. [5] 蒙印, 艾廷华, 杨井源. 1:250000水系要素综合缩编技术方法[J]. 测绘与空间地理信息, 2014, 37(3):201-203. MENG Yin, AI Tinghua, YANG Jingyuan. A map generalization method for 1:250000 hydrographic feature[J]. Geomatics & Spatial Information Technology, 2014, 37(3):201-203. [6] RUAS A. Multiple paradigms for automating map generalization:Geometry, topology, hierarchical partitioning and local triangulation[C]//American Congress on Surveying and Mapping, American Society for Photogrammetry and Remote Sensing.[S.l.]:ACSM1995:69-68. [7] CHENG Pengfei, YAN Haowen, HAN Zhenhui. An algorithm for computing the minimum area bounding rectangle of an arbitrary polygon[J]. Journal of Engineering Graphics, 2008, 29(1):122-126. [8] WARE J M, JONES C B, BUNDY G L. A triangulated spatial model for cartographic generalization of areal objects[C]//KRAAK M J, MOLENAAR M. Advance in GIS Research Ⅱ (the 7th Int. Symposium on Spatial Data Handling). London:Taylor & Francis, 1997:173-192. [9] 艾廷华, 郭仁忠. 支持地图综合的面状目标约束Delaunay三角网剖分[J]. 武汉测绘科技大学学报, 2000, 25(1):35-41. AI Tinghua, GUO Renzhong. A constrained delaunay partitioning of areal objects to support map generalization[J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000, 25(1):35-41. [10] 祝国瑞. 地图学[M]. 武汉:武汉大学出版社, 2004. ZHU Guorui. Cartography[M]. Wuhan:Wuhan University Press, 2004. [11] 黄亚锋, 艾廷华, 刘鹏程. 顾及Gestalt认知效应的线性岛屿模式识别[J]. 武汉大学学报(信息科学版), 2011, 36(6):717-720. HUANG Yafeng, AI Tinghua, LIU Pengcheng. Linear island alignment recognition based on gestalt principle[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6):717-720. [12] 王骁, 钱海忠, 何海威, 等. 利用空白区域骨架线网眼匹配多源面状居民地[J]. 测绘学报, 2015, 44(8):927-935. DOI:10.11947/j.AGCS.2015.20140462. WANG Xiao, QIAN Haizhong, HE Haiwei, et al. Matching multi-source areal habitations with skeleton line mesh of blank region[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(8):927-935. DOI:10.11947/j.AGCS.2015.20140462. [13] 艾廷华, 郭仁忠. 支持地图综合的面状目标约束Delaunay三角网剖分[J]. 武汉测绘科技大学学报, 2000, 25(1):35-41. AI Tinghua, GUO Renzhong. A constrained delaunay partitioning of areal objects to support map generalization[J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000, 25(1):35-41. [14] ZOU Jujia, YAN Hong. Skeletonization of ribbon-like shapes based on regularity and singularity analyses[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2001, 31(3):401-407. [15] MORRISON P, ZOU Jujia. Triangle refinement in a constrained delaunay triangulation skeleton[J]. Pattern Recognition, 2007, 40(10):2754-2765. [16] 陈涛, 艾廷华. 多边形骨架线与形心自动搜寻算法研究[J]. 武汉大学学报(信息科学版), 2004, 29(5):443-446, 455. CHEN Tao, AI Tinghua. Automatic extraction of skeleton and center of area feature[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5):443-446, 455. [17] 王中辉, 闫浩文. 多边形主骨架线提取算法的设计与实现[J]. 地理与地理信息科学, 2011, 27(1):42-44, 48. WANG Zhonghui, YAN Haowen. Design and implementation of an algorithm for extracting the main skeleton lines of polygons[J]. Geography and Geo-Information Science, 2011, 27(1):42-44, 48. [18] 刘远刚, 郭庆胜, 孙雅庚, 等. 地图目标群间骨架线提取的算法研究[J]. 武汉大学学报(信息科学版), 2015, 40(2):264-268. LIU Yuangang, GUO Qingsheng, SUN Yageng, et al. An algorithm for skeleton extraction between map objects[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2):264-268. [19] MITROPOULOS V, XYDIA A, NAKOS B, et al. The use of epsilon-convex area for attributing bends along a cartographic line[C]//Proceedings of the 12th International Cartographic Conference. la Corona, Spain:[s.n.], 2005. [20] PARK S C, CHUNG Y C. Mitered offset for profile machining[J]. Computer-Aided Design, 2003, 35(5):501-505. [21] YI I L, LEE Y S, SHIN H. Mitered offset of a mesh using QEM and vertex split[C]//Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling. New York, NY:ACM, 2008:315-320. [22] 唐常青, 吕宏伯, 黄铮, 等. 数学形态学方法及其应用[M]. 北京:科学出版社, 1990. TANG Changqing, LÜ Hongbo, HUANG Zheng, et al. Mathematical morphology method and its application[M]. Beijing:Science Press, 1990. [23] SERNA A, MARCOTEGUI B. Detection, segmentation and classification of 3D urban objects using mathematical morphology and supervised learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014(93):243-255. [24] HAUNERT J H, SESTER M. Area collapse and road centerlines based on straight skeletons[J]. GeoInformatica, 2008, 12(2):169-191. [25] 刘小凤, 吴艳兰, 胡海. 面状要素的多层次骨架线提取[J]. 测绘学报, 2013, 42(4):588-594. LIU Xiaofeng, WU Yanlan, HU Hai. A method of extracting multiscale skeletons for polygonal shapes[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(4):588-594. [26] MULLER J C. Fractal and automated line generalization[J]. The Cartographic Journal, 1987, 24(1):27-34. |