测绘学报 ›› 2017, Vol. 46 ›› Issue (1): 1-8.doi: 10.11947/j.AGCS.2017.20160519
• 综述 • 下一篇
杨元喜1,2, 徐天河3, 薛树强4
收稿日期:
2016-10-19
修回日期:
2016-10-30
出版日期:
2017-01-20
发布日期:
2017-02-06
作者简介:
杨元喜(1956-),男,博士,研究员,中国科学院院士,主要从事动态大地测量数据与卫星导航数据处理研究。E-mail:yuanxi_yang@163.com
基金资助:
YANG Yuanxi1,2, XU Tianhe3, XUE Shuqiang4
Received:
2016-10-19
Revised:
2016-10-30
Online:
2017-01-20
Published:
2017-02-06
Supported by:
摘要: 领海是国家主权的重要组成部分,国家空间基准和位置服务应该覆盖陆地和海洋。以2000国家大地坐标系和2000国家重力基准为代表,我国已在陆地建成了较为完善的大地测量基准。然而,现有国家空间基准和重力基准未能有效覆盖海洋,海洋大地测量基准和海洋导航技术已严重滞后于国家社会经济发展新形势和国防战略需求。本文主要论述了我国海洋大地测量基准与海洋导航技术的研究现状,梳理了我国海洋大地测量基准所涉及的关键技术,分析了近期及未来我国自主发展海洋大地测量基准与海洋导航技术的主要方向。
中图分类号:
杨元喜, 徐天河, 薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望[J]. 测绘学报, 2017, 46(1): 1-8.
YANG Yuanxi, XU Tianhe, XUE Shuqiang. Progresses and Prospects in Developing Marine Geodetic Datum and Marine Navigation of China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 1-8.
[1] FAVALI P, BERANZOLI L. Seafloor Observatory Science:A Review[J]. Annals of Geophysics, 2006, 49(2-3):515-567. [2] MATSUMOTO Y, ISHIKAWA T, FUJITA M, et al. Weak Interplate Coupling Beneath the Subduction Zone Off Fukushima, NE Japan, Inferred from GPS/Acoustic Seafloor Geodetic Observation[J]. Earth, Planets and Space, 2008, 60(6):9-12. [3] MOCHIZUKI M, SATO M, KATAYAMA M, et al. Construction of Seafloor Geodetic Observation Network Around Japan[J]. Recent Advances in Marine Science and Technology, 2002:591-600. [4] FUJIWARA T, KODAIRA S, KAIHO Y, et al. The 2011 Tohoku-Oki Earthquake:Displacement Reaching the Trench Axis[J]. Science, 2011, 334(6060):1240. [5] BLUM J A, CHADWELL C D, DRISCOLL N, et al. Assessing Slope Stability in the Santa Barbara Basin, California, Using Seafloor Geodesy and CHIRP Seismic Data[J]. Geophysical Research Letters, 2010, 37(13):L13308. [6] MATSUMOTO Y, FUJITA M, ISHIKAWA T, et al. Undersea Co-seismic Crustal Movements Associated with the 2005 Off Miyagi Prefecture Earthquake Detected by GPS/Acoustic Seafloor Geodetic Observation[J]. Earth, Planets and Space, 2006, 58(12):1573-1576. [7] CHADWELL C D, HILDEBRAND J A, SPIESS F N, et al. Seafloor Geodetic Monitoring with the Plate Boundary Observatory[M].[S.l.]:Citeseer, 2002. [8] 佚名. 美国拟创建水下全球定位系统[J]. 渔业现代化, 2015(3):55. ANONYMOUS. The United States Intends to Create Underwater Global Positioning System[J]. Fishery Modernization, 2015 (3):55. [9] MCINTYRE M C. Design and Testing of a Seafloor Geodetic System[D]. San Diego, CA:University of California, 1989. [10] YOUNG L E, WU S C, DIXON T H. Decimeter GPS Positioning for Surface Element of Sea Floor Geodesy System[M].Netherlands:Springer, 1987:223-232. [11] WATANABE S I, ISHIKAWA T, YOKOTA Y. Non-Volcanic Crustal Movements of the Northernmost Philippine Sea Plate Detected by the GPS-acoustic Seafloor Positioning[J]. Earth, Planets and Space, 2015, 67(1):184. [12] ALCOCER A, OLIVEIRA P, PASCOAL A. Underwater Acoustic Positioning Systems Based on Buoys with GPS[C]//Proceedings of the 8th European Conference on Underwater Acoustics. Carvoeiro:[s.n.], 2006. [13] SWEENEY A D, CHADWELL C D, HILDEBRAND J A, et al. Centimeter-level Positioning of Seafloor Acoustic Transponders from a Deeply-towed Interrogator[J]. Marine Geodesy, 2005, 28(1):39-70. [14] SPIESS F N, CHADWELL C D, HILDEBRAND J A, et al. Precise GPS/Acoustic Positioning of Seafloor Reference Points for Tectonic Studies[J]. Physics of the Earth and Planetary Interiors, 1998, 108(2):101-112. [15] WUNSCH C, GAPOSCHKIN E M. On Using Satellite Altimetry to Determine the General Circulation of the Oceans with Application to GEOID Improvement[J]. Reviews of Geophysics, 1980, 18(4):725-745. [16] HWANG C, HSU H Y, JANG R J. Global Mean Sea Surface and Marine Gravity Anomaly from Multi-satellite Altimetry:Applications of Deflection-geoid and Inverse Vening Meinesz Formulae[J]. Journal of Geodesy, 2002, 76(8):407-418. [17] BURŠA M, KENYON S, KOUBA J, et al. World Height System Specified by Geopotential at Tide Gauge Stations[M].Berlin Heidelberg:Springer, 2002:291-296. [18] 暴景阳, 许军. 卫星测高数据的潮汐提取与建模应用[M]. 北京:测绘出版社, 2013. BAO Jingyang, XU Jun. Tide Analysis from Altimeter Data and the Establishment and Application of Tide Model[M]. Beijing:Surveying and Mapping Press, 2013. [19] 侯世喜, 黄辰虎, 陆秀平, 等. 基于余水位配置的海洋潮汐推算研究[J]. 海洋测绘, 2005, 25(6):29-33. HOU Shixi, HUANG Chenhu, LU Xiuping, et al. Reckoning Rearch Based on Residual Water Level of Tide[J]. Hydrographic Surveying and Charting, 2005, 25(6):29-33. [20] 陈丽洁, 张鹏, 徐兴烨, 等. 矢量水听器综述[J]. 传感器与微系统, 2006, 25(6):5-8. CHEN Lijie, ZHANG Peng, XU Xingye, et al. Overview of Vector Hydrophone[J]. Transducer and Microsystem Technologies, 2006, 25(6):5-8. [21] BÉCHAZ C, BOUCQUAERT F. Underwater Positioning:Centimetric Accuracy Underwater-GPS[J]. Hydro International, 2006(3):125. [22] 刘焱雄, 彭琳, 吴永亭, 等. 超短基线水声定位系统校准方法研究[J]. 武汉大学学报(信息科学版), 2006, 31(7):610-612. LIU Yanxiong, PENG Lin, WU Yongting, et al. Calibration of Transducer and Transponder Positions[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7):610-612. [23] MOCHIZUKI M, ASADA A, URA T, et al. Fundamental Developments of New Generation Seafloor Geodetic Observation System Based on AUV Technology[C]//Proceedings of the OCEANS 2008-MTS/IEEE Kobe Techno-Ocean. Kobe:IEEE, 2008. [24] XU Peiliang, ANDO M, TADOKORO K. Precise, Three-dimensional Seafloor Geodetic Deformation Measurements Using Difference Techniques[J]. Earth, Planets and Space, 2005, 57(9):795-808. [25] GOLDSTEIN M S, BRETT J J. Precision Gravity Gradiometer/AUV System[C]//Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles. Cambridge, CA:IEEE, 1998:167-174. [26] RICE H, MENDELSOHN L, AARONS R, et al. Next Generation Marine Precision Navigation System[C]//Proceedings of the Position Location and Navigation Symposium. San Diego, CA:IEEE, 2000. [27] 李明. GPS联测海底控制网精度的研究[J]. 武汉测绘科技大学学报, 1992, 17(1):74-82. LI Ming. Precision Investigation for Ocean Bottom Control Network Using GPS[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1992, 17(1):74-82. [28] 吴永亭. LBL精密定位理论方法研究及软件系统研制[D]. 武汉:武汉大学, 2013. WU Yongting. Study on Theory and Method of Precise LBL Positioning and Development of Positionig Software System[D]. Wuhan:Wuhan University, 2013. [29] ZHAO Jianhu, ZOU Yajing, ZHANG Hongmei, et al. A New Method for Absolute Datum Transfer in Seafloor Control Network Measurement[J]. Journal of Marine Science and Technology, 2016, 21(2):216-226. [30] 薛树强, 党亚民, 章传银. 差分水下GPS定位空间网的布设研究[J]. 测绘科学, 2006, 31(4):23-24. XUE Shuqiang, DANG Yamin, ZHANG Chuanyin. Research on Setting 3D Network of Underwater DGPS[J]. Science of Surveying and Mapping, 2006, 31(4):23-24. [31] 赵建虎, 王爱学. 精密海洋测量与数据处理技术及其应用进展[J]. 海洋测绘, 2015, 35(6):1-7. ZHAO Jianhu, WANG Aixue. Precise Marine Surveying and Processing Technology and Their Progress of Application[J]. Hydrographic Surveying and Charting, 2015, 35(6):1-7. [32] 徐德明. 中国测绘地理信息创新报告(2012)[M]. 北京:社会科学文献出版社, 2012. XU Deming. Report on Status of Innovation of Surveying & Mapping & Geograpihc Information in China (2012)[M]. Beijing:Social Sciences Academic Press, 2012. [33] 陈俊勇, 李健成, 晁定波, 等. 我国海域大地水准面的计算及其与大陆大地水准面拼接的研究和实施[J]. 地球物理学报, 2003, 46(1):31-35. CHEN Junyong, LI Jiancheng, CHAO Dingbo, et al. Geoid Determination on China Sea and Its Merge with the Geoid in China Mainland[J]. Chinese Journal of Geophysics, 2003, 46(1):31-35. [34] 李建成. 最新中国陆地数字高程基准模型:重力似大地水准面CNGG2011[J]. 测绘学报, 2012, 41(5):651-660, 669. LI Jian Cheng. The Recent Chinese Terrestrial Digital Height Datum Model:Gravimetric Quasi-geoid CNGG2011[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5):651-660, 669. [35] 李建成, 王正涛, 胡建国. 联合多种卫星测高数据分析全球和中国海海平面变化[J]. 武汉测绘科技大学学报, 2000, 25(4):343-347. LI Jiancheng, WANG Zhengtao, HU Jianguo. Mean Sea Level Variation Using Historic Satelite Altimeter Data[J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000, 25(4):343-347. [36] 李建成, 宁津生, 陈俊勇, 等. 联合TOPEX/Poseidon, ERS2和Geosat卫星测高资料确定中国近海重力异常[J]. 测绘学报, 2001, 30(3):197-202. LI Jiancheng, NING Jinsheng, CHEN Junyong, et al. Determination of Gravity Anomalies over the South China Sea by Combination of TOPEX/Poseidon, ERS2 and Geosat Altimeter Data[J]. Acta Geodaetica et Cartographica Sinica, 2001, 30(3):197-202. [37] 李建成, 姜卫平, 章磊. 联合多种测高数据建立高分辨率中国海平均海面高模型[J]. 武汉大学学报(信息科学版), 2001, 26(1):40-45. LI Jiancheng, JIANG Weiping, ZHANG Lei. High Resolution Mean Sea Surface over China Sea Derived from Multi-satellite Altimeter Data[J]. Geomatics and Information Science of Wuhan University, 2001, 26(1):40-45. [38] 姜卫平, 李建成, 王正涛. 联合多种测高数据确定全球平均海面WHU2000[J]. 科学通报, 2002, 47(15):1187-1191. JIANG Weiping, LI Jiancheng, WANG Zhengtao. Determination of Global Mean Sea Surface WHU2000 Using Multi-Satellite Altimetric Data[J]. Chinese Science Bulletin, 2002, 47(15):1187-1191. [39] 金涛勇, 李建成, 邢乐林,等. 多源卫星测高数据基准的统一研究[J]. 大地测量与地球动力学, 2008, 28(3):92-95, 99. JIN Taoyong, LI Jiancheng, XING Lelin, et al. Research on Datum Unification of Multi-satellite Altimetric Data[J]. Journal of Geodesy and Geodynamics, 2008, 28(3):92-95, 99. [40] 冯伟, 钟敏, 许厚泽. 联合卫星重力、卫星测高和海洋资料研究中国南海海平面变化[J]. 中国科学:地球科学, 2012, 42(3):313-319. FENG Wei, ZHONG Min, XU Houze. Sea Level Variations in the South China Sea Inferred from Satellite Gravity, Altimetry, and Oceanographic Data[J]. Science China Earth Sciences, 2012, 42(3):313-319. [41] 郭海荣, 焦文海, 杨元喜. 1985国家高程基准与全球似大地水准面之间的系统差及其分布规律[J]. 测绘学报, 2004, 33(2):100-104. GUO Hairong, JIAO Wenhai, YANG Yuanxi. The Systematic Difference and Its Distribution between the 1985 National Height Datum and the Global Quasigeoid[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(2):100-104. [42] 束蝉方, 李斐, 张利明. 基于EGM2008重力场模型的局部高程基准统一[J]. 地球物理学进展, 2011, 26(2):438-442. SHU Chanfang, LI Fei, ZHANG Liming. Local Height Datum Unification Using EGM2008[J]. Progress in Geophysics, 2011, 26(2):438-442. [43] 章传银,常晓涛,成英燕. 测绘垂直基准相互转换与统一技术[C]//地理空间信息技术与应用——中国科协2002年学术年会测绘论文集. 北京:[s.n.], 2002. ZHANG Chuanyin, CHANG Xiaotao, CHENG Yingyan. Technology of Transformation and Unification for the Vertical Reference Datum[C]//2002 China Association for Science and Technology 14 Session:Ocean Development and Sustainable Development. Beijing:[s.n.],2002. [44] 柯宝贵, 章传银, 张利明. 远离大陆海岛的高程传递[J]. 测绘通报, 2011(12):3-4, 32. KE Baogui, ZHANG Chuanyin, ZHANG Liming. Height Transmission Far from the Mainland[J]. Bulletin of Surveying and Mapping, 2011(12):3-4, 32. [45] BAO Lifeng, XU Houze. Quasi-geoid Near Xisha Islands by the Geo-potential Propagating Technique[J]. Marine Geodesy, 2012, 35(3):322-342. [46] 柯灏. 海洋无缝垂直基准构建理论和方法研究[D]. 武汉:武汉大学, 2012. KE Hao. Research on the Theory and Implementation Method of Marine Seamless Vertical Reference Surface[D]. Wuhan:Wuhan University, 2012. [47] 赵建虎, 董江, 柯灝, 等. 远距离高精度GPS潮汐观测及垂直基准转换研究[J]. 武汉大学学报(信息科学版), 2015, 40(6):761-766. ZHAO Jianhu, DONG Jiang, KE Hao, et al. High Precision GPS Tide Measurement Method in a Far-distance and Transformation Model for the Vertical Datum[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6):761-766. [48] 863计划"水下GPS高精度定位系统"课题组. 我国首套水下GPS高精度定位导航系统简介[J]. 中国水利, 2004(3):52-53. 863 Project Group of Underwater GPS High Precision Positioning System. An Introduction of the First Set of Underwater GPS High-precise Positioning Navigation System[J]. China Water Resources, 2004(3):52-53. [49] 吴永亭, 周兴华, 杨龙. 水下声学定位系统及其应用[J]. 海洋测绘, 2003, 23(4):18-21. WU Yongting, ZHOU Xinghua, YANG Long. Underwater Acoustic Positionng System and Its Application[J]. Hydrographic Surveying and Charting, 2003, 23(4):18-21. [50] 宁津生, 吴永亭, 孙大军. 长基线声学定位系统发展现状及其应用[J]. 海洋测绘, 2014, 34(1):72-75. NING Jinsheng, WU Yongting, SUN Dajun. The Development of LBL Acoustic Positioning System and Its Application[J]. Hydrographic Surveying and Charting, 2014, 34(1):72-75. [51] 李莉. 长基线阵测阵校阵技术研究[D]. 哈尔滨:哈尔滨工程大学, 2007. LI Li. Study on Array Measuring & Calibration for Long Base Line Array[J]. Harbin:Harbin Engineering University, 2007. [52] 汪云家, 吴学兵. 浅海检波器二次定位技术的发展与应用[M]. 东营:中国石油大学出版社, 2010. WANG Yunjia,WU Xuebing. Advances and Applications of Shallow Water Geophone Secondary Positioning Technology[M]. Beijing:China University of Petroleum Press, 2010. [53] 郭有光, 钟斌, 边少锋. 地球重力场确定与重力场匹配导航[J]. 海洋测绘, 2003, 23(5):61-64. GUO Youguang, ZHONG Bin, BIAN Shaofeng. The Determination of Earth Gravity Field and the Matched Navigation in Gravity Field[J]. Hydrographic Surveying and Charting, 2003, 23(5):61-64. [54] 李姗姗. 水下重力辅助惯性导航的理论与方法研究[D]. 郑州:信息工程大学, 2010. LI Shanshan. Research on the Theory and Method of Underwater Gravity-aided Inertial Navigation[D]. Zhengzhou:Information Engineering University, 2010. [55] 李姗姗, 吴晓平, 马彪. 水下重力异常相关极值匹配算法研究[J]. 测绘学报, 2011, 40(4):464-469. LI Shanshan, WU Xiaoping, MA Biao. Research on the Correlative Extremum Matching Algorithm Using Underwater Gravity Anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4):464-469. [56] 吴太旗, 黄谟涛, 陆秀平,等. 重力场匹配导航的重力图生成技术[J]. 中国惯性技术学报, 2007, 15(4):438-441. WU Taiqi, HUANG Motao, LU Xiuping, et al. Gravity Map Creating Technology in Gravity Matching Navigation[J]. Journal of Chinese Inertial Technology, 2007, 15(4):438-441. [57] 王志刚, 边少锋. 基于ICCP算法的重力辅助惯性导航[J]. 测绘学报, 2008, 37(2):147-151, 157. WANG Zhigang, BIAN Shaofeng. ICCP Algorithm for Gravity Aided Inertial Navigation[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(2):147-151, 157. [58] 许大欣. 利用重力异常匹配技术实现潜艇导航[J]. 地球物理学报, 2005, 48(4):812-816. XU Daxin. Using Gravity Anomaly Matching Techniques to Implement Submarine Navigation[J]. Chinese Journal of Geophysics, 2005, 48(4):812-816. [59] WANG Bo, YU Li, DENG Zhihong, et al. A Particle Filter-based Matching Algorithm With Gravity Sample Vector for Underwater Gravity Aided Navigation[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(3):1399-1408. [60] 彭富清. 地磁模型与地磁导航[J]. 海洋测绘, 2006, 26(2):73-75. PENG Fuqing. Geomagnetic Model and Geomagnetic Navigation[J]. Hydrographic Surveying and Charting, 2006, 26(2):73-75. [61] 郭才发, 胡正东, 张士峰, 等. 地磁导航综述[J]. 宇航学报, 2009, 30(4):1314-1319, 1389. GUO Caifa, HU Zhengdong, ZHANG Shifeng, et al. A Survey of Geomagnetic Navigation[J]. Journal of Astronautics, 2009, 30(4):1314-1319, 1389. [62] 赵建虎, 张红梅, 王爱学, 等. 利用ICCP的水下地磁匹配导航算法[J]. 武汉大学学报(信息科学版), 2010, 35(3):261-264. ZHAO Jianhu, ZHANG Hongmei, WANG Aixue, et al. Underwater Geomagnetic Navigation Based on ICCP[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3):261-264. [63] AKYILDIZ I F, POMPILI D, MELODIA T. Underwater Acoustic Sensor Networks:Research Challenges[J]. Ad Hoc Networks, 2005, 3(3):257-279. [64] YANG Fanlin, LU Xiushan, LI Jiabiao, et al. Precise Positioning of Underwater Static Objects without Sound Speed Profile[J]. Marine Geodesy, 2011, 34(2):138-151. [65] CHADWELL C D, SWEENEY A D. Acoustic Ray-trace Equations for Seafloor Geodesy[J]. Marine Geodesy, 2010, 33(2-3):164-186. [66] KIDO M, OSADA Y, FUJIMOTO H. Temporal Variation of Sound Speed in Ocean:A Comparison between GPS/Acoustic and in Situ Measurements[J]. Earth, Planets and Space, 2008, 60(3):229-234. [67] OSADA Y, FUJIMOTO H, MIURA S, et al. Estimation and Correction for the Effect of Sound Velocity Variation on GPS/Acoustic Seafloor Positioning:An Experiment Off Hawaii Island[J]. Earth, Planets and Space, 2003, 55(10):17-20. [68] SATO M, FUJITA M, MATSUMOTO Y, et al. Improvement of GPS/Acoustic Seafloor Positioning Precision Through Controlling the Ship's Track Line[J]. Journal of Geodesy, 2013, 87(9):825-842. [69] FUJITA M, ISHIKAWA T, MOCHIZUKI M, et al. GPS/Acoustic Seafloor Geodetic Observation:Method of Data Analysis and Its Application[J]. Earth, Planets and Space, 2006, 58(3):265-275. [70] BALLU V, BOUIN M N, CALMANT S, et al. Absolute Seafloor Vertical Positioning Using Combined Pressure Gauge and Kinematic GPS Data[J]. Journal of Geodesy, 2010, 84(1):65-77. [71] 薛树强, 杨元喜. 最小GDOP定位构型的一种嵌套圆锥结构[J]. 武汉大学学报(信息科学版), 2014, 39(11):1369-1374. XUE Shuqiang, YANG Yuanxi. Nested Cones for Single-point-positioning Configuration with Minimal GDOP[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11):1369-1374. [72] 薛树强, 杨元喜, 党亚民. 测距定位方程非线性平差的封闭牛顿迭代公式[J]. 测绘学报, 2014, 43(8):771-777. XUE Shuqiang, YANG Yuanxi, DANG Yamin. A Closed-form of Newton Iterative Formula for Nonlinear Adjustment of Distance Equations[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8):771-777. [73] 聂志喜, 王振杰, 欧吉坤, 等. 非线性基线长约束条件线性化近似对模糊度解算影响[J]. 测绘学报, 2015, 44(2):168-173. DOI:10.11947/j.AGCS.2015.20130491. NIE Zhixi, WANG Zhenjie, OU Jikun, et al. On the Effect of Linearization and Approximation of Nonlinear Baseline Length Constraint for Ambiguity Resolution[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2):168-173. DOI:10.11947/j.AGCS.2015.20130491. [74] 周军, 葛致磊, 施桂国, 等. 地磁导航发展与关键技术[J]. 宇航学报, 2008, 29(5):1467-1472. ZHOU Jun, GE Zhilei, SHI Guiguo, et al. Key Technique and Development for Geomagnetic Navigation[J]. Journal of Astronautics, 2008, 29(5):1467-1472. [75] 杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. YANG Yuanxi. Concepts of Comprehensive PNT and Related Key Technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. [76] 杨元喜, 陆明泉, 韩春好. GNSS互操作若干问题[J]. 测绘学报, 2016, 45(3):253-259. DOI:10.11947/j.AGCS.2016.20150653. YANG Yuanxi, LU Mingquan, HAN Chunhao. Some Notes on Interoperability of GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3):253-259. DOI:10.11947/j.AGCS.2016.20150653. [77] 杨元喜, 徐君毅. 北斗在极区导航定位性能分析[J]. 武汉大学学报(信息科学版), 2016, 41(1):15-20. YANG Yuanxi, XU Junyi. Navigation Performance of BeiDou in Polar Area[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1):15-20. [78] 杨元喜. 2000中国大地坐标系[J]. 科学通报, 2009, 54(16):2271-2276. YANG Yuanxi. Chinese Geodetic Coordinate System 2000[J]. Chinese Science Bulletin, 2009, 54(16):2271-2276. [79] 陈俊勇, 杨元喜, 王敏, 等. 2000国家大地控制网的构建和它的技术进步[J]. 测绘学报, 2007, 36(1):1-8. CHEN Junyong, YANG Yuanxi, WANG Min, et al. Establishment of 2000 National Geodetic Control Network of China and Its Technological Progress[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(1):1-8. [80] 程鹏飞, 杨元喜, 孙海燕, 等. 我国大地测量工作的新进展[C]//全面建设小康社会:中国科技工作者的历史责任——中国科协2003年学术年会论文集. 北京:中国测绘学会, 2003. CHENG Pengfei, YANG Yuanxi, SUN Haiyan, et al. New Developments of Chinese Geodetic Infrastructure[C]//All-round Construction of Well-off Society:Historical Responsibilities of Chinese S&T Researchers-2003 China Association for Science and Technology Proceedings. Beijing:Chinese Society for Geodesy Photogrammetry and Cartography, 2003. [81] 杨元喜, 张丽萍. 中国大地测量数据处理60年重要进展第一部分:函数模型和随机模型进展[J]. 地理空间信息, 2009, 7(6):1-5. YANG Yuanxi, ZHANG Liping. Progress of Geodetic Data Processing for 60 Years in China Part 1:Progress of Functional and Stochastic Model[J]. Geospatial Information, 2009, 7(6):1-5. [82] 杨元喜, 张丽萍. 中国大地测量数据处理60年重要进展第二部分:大地测量参数估计理论与方法的主要进展[J]. 地理空间信息, 2010, 8(1):1-6. YANG Yuanxi, ZHANG Liping. Progress of Geodetic Data Processing for 60 Years in China Part 2:Progress of Parameter Estimation Theory and Methodology[J]. Geospatial Information, 2010, 8(1):1-6. |
[1] | 陈锐志, 钱隆, 牛晓光, 徐诗豪, 陈亮, 裘超. 基于数据与模型双驱动的音频/惯性传感器耦合定位方法[J]. 测绘学报, 2022, 51(7): 1160-1171. |
[2] | 施闯, 辜声峰, 楼益栋, 郑福, 宋伟, 张东, 毛飞宇. 广域实时精密定位与时间服务系统[J]. 测绘学报, 2022, 51(7): 1206-1214. |
[3] | 金双根, 汪奇生, 史奇奇. 单频到五频多系统GNSS精密单点定位参数估计与应用[J]. 测绘学报, 2022, 51(7): 1239-1248. |
[4] | 姜卫平, 李昭, 魏娜, 刘经南. 大地测量坐标框架建立的进展与思考[J]. 测绘学报, 2022, 51(7): 1259-1270. |
[5] | 王任享, 王建荣. 我国卫星摄影测量发展及其进步[J]. 测绘学报, 2022, 51(6): 804-810. |
[6] | 李广云, 孙森震, 王力, 冯其强. 可见光通信室内定位技术进展与应用[J]. 测绘学报, 2022, 51(6): 909-922. |
[7] | 单杰, 田祥希, 李爽, 李韧菲. 星载激光测高技术进展[J]. 测绘学报, 2022, 51(6): 964-982. |
[8] | 杨凯淳, 吕志平, 李林阳, 邝英才, 许炜, 郑茜. 附加历元间约束的滑动窗单频实时精密单点定位算法[J]. 测绘学报, 2022, 51(5): 648-657. |
[9] | 余文坤, 吴佩达, 张昊楠, 胡广浩, 阮福明, 戴吾蛟, 匡翠林. 基于多项式曲线拟合的海上地震勘探拖缆定位[J]. 测绘学报, 2022, 51(5): 772-780. |
[10] | 陈俊平, 张益泽, 于超, 丁君生. 北斗卫星导航系统精密定位报告算法与性能评估[J]. 测绘学报, 2022, 51(4): 511-521. |
[11] | 杜祯强, 柴洪洲, 向民志, 章繁, 黄紫如, 朱华巍. UUVs集群协同定位的分散式增广信息滤波方法[J]. 测绘学报, 2022, 51(2): 182-191. |
[12] | 赵玏洋, 闫利. 移动机器人SLAM位姿估计的改进四元数无迹卡尔曼滤波[J]. 测绘学报, 2022, 51(2): 212-223. |
[13] | 杨高朝, 王庆, 蔚保国, 刘鹏飞, 李爽. 基于抗差LM的视觉惯性里程计与伪卫星混合高精度室内定位[J]. 测绘学报, 2022, 51(1): 18-30. |
[14] | 闫凤池, 王振杰, 赵爽, 聂志喜, 孙振, 李伟嘉. 顾及双程声径的常梯度声线跟踪水下定位算法[J]. 测绘学报, 2022, 51(1): 31-40. |
[15] | 闫利, 陈宇, 谢洪, 戴集成, 赵英豪, 胡啸, 李瑶, 赵玏洋, 王月琴. 测量机器人的关键技术[J]. 测绘学报, 2021, 50(9): 1159-1169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||