测绘学报 ›› 2025, Vol. 54 ›› Issue (2): 221-232.doi: 10.11947/j.AGCS.2025.20240270
• 大地测量学与导航 • 上一篇
收稿日期:
2024-07-02
发布日期:
2025-03-11
通讯作者:
祝会忠
E-mail:lijun_ch@lntu.edu.cn;zhuhuizhong@lntu.edu.cn
作者简介:
李军(1994—),男,博士,讲师,研究方向为GNSS地基增强定位算法。 E-mail:lijun_ch@lntu.edu.cn
基金资助:
Jun LI(), Huizhong ZHU(
), Zhiqiang LIU
Received:
2024-07-02
Published:
2025-03-11
Contact:
Huizhong ZHU
E-mail:lijun_ch@lntu.edu.cn;zhuhuizhong@lntu.edu.cn
About author:
LI Jun (1994—), male, PhD, lecturer, majors in GNSS ground-based enhanced positioning algorithm. E-mail: lijun_ch@lntu.edu.cn
Supported by:
摘要:
参考站网整周模糊度固定是网络RTK高精度实现的基础,但随着参考站间距增加,大气误差的空间残余使得参考站解算困难,特别是时空变化复杂的电离层延迟误差,严重影响参考站网固定的性能。参考站模糊度解算时将大气参数以随机游走的方式进行估计,本文在分析电离层功率谱密度(ionospheric power spectral density,IPSD)对参考站模糊度固定性能的基础上,研究不同差分间隔的电离层观测值的时变特性。通过观测噪声和电离层随差分时间间隔的不同变化趋势,削弱电离层观测值噪声来确定IPSD,优化参考站模糊度估计中电离层参数的随机模型,进而提升长距离参考站网的固定效率,不再采用未考虑大气变化的经验值或经验模型。试验结果表明,通过1 s采样间隔数据实时估计的IPSD可以优化参考站整周模糊度的浮点解精度,同时也能缩小整周模糊度的搜索范围,与电离层经验功率谱密度的参考站模糊度固定性能比较,本文方法在基线长度100 km以上的5个参考站网中收敛时间提升21%,模糊度固定成功率也得到相应提升。
中图分类号:
李军, 祝会忠, 刘智强. 北斗长距离参考站网模糊度固定中电离层参数的优化方法[J]. 测绘学报, 2025, 54(2): 221-232.
Jun LI, Huizhong ZHU, Zhiqiang LIU. An optimization method for ionospheric parameters in ambiguity resolution of BDS long-range reference station network[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 221-232.
[1] |
李军, 祝会忠, 徐爱功, 等. 电离层时变特性约束的BDS长距离RTK定位算法[J]. 测绘学报, 2023, 52(3): 383-396. DOI:.
doi: 10.11947/j.AGCS.2023.20220283 |
LI Jun, ZHU Huizhong, XU Aigong, et al. BDS long-range RTK positioning algorithm considering the time-varying properties of ionosphere[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(3): 383-396. DOI:.
doi: 10.11947/j.AGCS.2023.20220283 |
|
[2] | YUAN Yunbin, MI Xiaolong, ZHANG Baocheng. Initial assessment of single- and dual-frequency BDS-3 RTK positioning[J]. Satellite Navigation, 2020, 1: 31. |
[3] | 唐卫明, 刘经南, 施闯, 等. 三步法确定网络RTK基准站双差模糊度[J]. 武汉大学学报(信息科学版), 2007, 32(4): 305-308. |
TANG Weiming, LIU Jingnan, SHI Chuang, et al. Three steps method to determine double difference ambiguities resolution of network RTK reference station[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 305-308. | |
[4] | 周乐韬, 黄丁发, 袁林果, 等. 网络RTK参考站间模糊度动态解算的卡尔曼滤波算法研究[J]. 测绘学报, 2007, 36(1): 37-42. |
ZHOU Letao, HUANG Dingfa, YUAN Linguo, et al. A Kalman filtering algorithm for online integer ambiguity resolution in reference station network[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(1): 37-42. | |
[5] | LI Bofeng, SHEN Yunzhong, FENG Yanming, et al. GNSS ambiguity resolution with controllable failure rate for long baseline network RTK[J]. Journal of Geodesy, 2014, 88(2): 99-112. |
[6] | 祝会忠. 基于非差误差改正数的长距离单历元GNSS网络RTK算法研究[J]. 测绘学报, 2015, 44(1): 116. |
ZHU Huizhong. The study of GNSS network RTK algorithm between long range at single epoch using un-difference error corrections[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(1): 116. | |
[7] |
高旺, 高成发, 潘树国, 等. 北斗三频宽巷组合网络RTK单历元定位方法[J]. 测绘学报, 2015, 44(6): 641-648. DOI:.
doi: 10.11947/.AGCS.2015.20140308 |
GAO Wang, GAO Chengfa, PAN Shuguo, et al. Single-epoch positioning method in network RTK with BDS triple-frequency widelane combinations[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6): 641-648. DOI:.
doi: 10.11947/.AGCS.2015.20140308 |
|
[8] | ODIJK D, VAN DER MAREL H, SONG I. Precise GPS positioning by applying ionospheric corrections from an active control network[J]. GPS Solutions, 2000, 3(3): 49-57. |
[9] | ZHANG Baocheng, HOU Pengyu, ZHA Jiuping, et al. PPP-RTK functional models formulated with undifferenced and uncombined GNSS observations[J]. Satellite Navigation, 2022, 3: 3. |
[10] | ZHANG Ming, LIU Hui, BAI Zhengdong, et al. Fast ambiguity resolution for long-range reference station networks with ionospheric model constraint method[J]. GPS Solutions, 2017, 21(2): 617-626. |
[11] | TANG Weiming, LIU Wenjian, ZOU Xuan, et al. Improved ambiguity resolution for URTK with dynamic atmosphere constraints[J]. Journal of Geodesy, 2016, 90(12): 1359-1369. |
[12] | ZOU Xuan, WANG Yawei, DENG Chenlong, et al. Instantaneous BDS+GPS undifferenced NRTK positioning with dynamic atmospheric constraints[J]. GPS Solutions, 2017, 22(1): 17. |
[13] |
祝会忠, 雷啸挺, 徐爱功, 等. 顾及GEO卫星约束的长距离BDS三频整周模糊度解算[J]. 测绘学报, 2020, 49(9): 1222-1234. DOI:.
doi: 10.11947/j.AGCS.2020.20200263 |
ZHU Huizhong, LEI Xiaoting, XU Aigong, et al. The integer ambiguity resolution of BDS triple-frequency between long range stations with GEO satellite constraints[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1222-1234. DOI:.
doi: 10.11947/j.AGCS.2020.20200263 |
|
[14] | 李博, 程鹏飞, 秘金钟, 等. 一种北斗非差非组合长距离基准站模糊度解算方法[J]. 武汉大学学报(信息科学版), 2023, 48(4): 593-603. |
LI Bo, CHENG Pengfei, BEl Jinzhong, et al. A method for ambiguity resolution of BDS undifferenced and uncombined long-range reference stations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 593-603. | |
[15] | ZHANG Xiaohong, REN Xiaodong, CHEN Jun, et al. Investigating GNSS PPP-RTK with external ionospheric constraints[J]. Satellite Navigation, 2022, 3: 6. |
[16] | SHI Chuang, GU Shengfeng, LOU Yidong, et al. An improved approach to model ionospheric delays for single-frequency precise point positioning[J]. Advances in Space Research, 2012, 49(12): 1698-1708. |
[17] | ZHAO Qile, WANG Yintong, GU Shengfeng, et al. Refining ionospheric delay modeling for undifferenced and uncombined GNSS data processing[J]. Journal of Geodesy, 2019, 93(4): 545-560. |
[18] | LI Jun, ZHU Huizhong, XU Aigong, et al. Estimating ionospheric power spectral density for long-range RTK positioning using uncombined observations[J]. GPS Solutions, 2023, 27(3): 109. |
[19] | LI Jun, ZHU Huizhong, LU Yangyang, et al. Performance analysis of undifferenced NRTK considering time-varying characteristics of atmosphere[J]. Remote Sensing, 2023, 15(19): 4784. |
[20] | ALBER C, WARE R, ROCKEN C, et al. Obtaining single path phase delays from GPS double differences[J]. Geophysical Research Letters, 2000, 27(17): 2661-2664. |
[21] | FAN Haopeng, SUN Zhongmiao, ZHANG Liping, et al. A two-step estimation method of troposphere delay with consideration of mapping function errors[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 76-84. |
[22] |
毛健, 崔铁军, 李晓丽, 等. 融合大气数值模式的高精度对流层天顶延迟计算方法[J]. 测绘学报, 2019, 48(7): 862-870. DOI:.
doi: 10.11947/j.AGCS.2019.20190003 |
MAO Jian, CUI Tiejun, LI Xiaoli, et al. A hight-accuracy method for tropospheric zenith delay error correction by fusing atmospheric numerical models[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 862-870. DOI:.
doi: 10.11947/j.AGCS.2019.20190003 |
|
[23] | SAASTAMOINEN J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites[M]//The use of artificial satellites for geodesy. Washington, D. C.: American Geophysical Union, 2013: 247-251. |
[24] | LIU Ying, LIU Wanke, ZHANG Xiaohong, et al. An improved GNSS ambiguity best integer equivariant estimation method with Laplacian distribution for urban low-cost RTK positioning[J]. Satellite Navigation, 2024, 5: 12. |
[25] |
周锋, 徐天河. GPS/BDS/Galileo三频精密单点定位模型及性能分析[J]. 测绘学报, 2021, 50(1): 61-70. DOI:.
doi: 10.11947/j.AGCS.2021.20200146 |
ZHOU Feng, XU Tianhe. Modeling and assessment of GPS/BDS/Galileo triple-frequency precise point positioning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 61-70. DOI:.
doi: 10.11947/j.AGCS.2021.20200146 |
|
[26] | LI Pan, ZHANG Xiaohong. Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning[J]. GPS Solutions, 2014, 18(3): 461-471. |
[27] | 葛茂荣, 刘经南. GPS定位中对流层折射估计研究[J]. 测绘学报, 1996, 25(4): 285-291. |
GE Maorong, LIU Jingnan. The estimation methods for tropospheric delays in global positioning system[J]. Acta Geodaetica et Cartographica Sinica, 1996, 25(4): 285-291. | |
[28] | TEUNISSEN P J G. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation[J]. Journal of Geodesy, 1995(a), 70(1/2): 65-82. |
[29] | TEUNISSEN P J G. Influence of ambiguity precision on the success rate of GNSS integer ambiguity bootstrapping[J]. Journal of Geodesy, 2007, 81(5): 351-358. |
[30] |
张宝成, 柯成, 查九平, 等. 非差非组合PPP-RTK:模型算法、终端样机与实测结果[J]. 测绘学报, 2022, 51(8): 1725-1735. DOI:.
doi: 10.11947/j.AGCS.2022.20210465 |
ZHANG Baocheng, KE Cheng, ZHA Jiuping, et al. Undifferenced and uncombined PPP-RTK: algorithmic models, prototype terminals and field-test results[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8): 1725-1735. DOI:.
doi: 10.11947/j.AGCS.2022.20210465 |
|
[31] | VERHAGEN S, LI Bofeng, TEUNISSEN P J G. Ps-LAMBDA: ambiguity success rate evaluation software for interferometric applications[J]. Computers & Geosciences, 2013, 54: 361-376. |
[1] | 程建华, 陈思成, 臧楠, 程思翔, 赵国晶, 马子凡. 附加自适应短时高程变化率约束的PPP/INS紧组合增强模型[J]. 测绘学报, 2024, 53(9): 1761-1776. |
[2] | 林英宗, 罗小敏, 杜俊锋. 高纬度地区PPP接收机跟踪噪声随机模型拟合改进[J]. 测绘学报, 2024, 53(4): 666-676. |
[3] | 杨玲, 朱金成, 孙楠, 喻杨康, 沈云中, 李博峰. GNSS高级接收机自主完好性监测随机模型精化[J]. 测绘学报, 2024, 53(2): 286-295. |
[4] | 李军, 祝会忠, 徐爱功, 路阳阳, 雷啸挺. 电离层时变特性约束的BDS长距离RTK定位算法[J]. 测绘学报, 2023, 52(3): 383-396. |
[5] | 舒宝, 刘晖, 王利, 张勤, 黄观文. 区域参考站网支撑的PPP和RTK一体化服务及其性能[J]. 测绘学报, 2022, 51(9): 1870-1880. |
[6] | 王薪普, 薛树强, 曲国庆, 刘以旭, 杨文龙. 水下定位声线扰动分析与分段指数权函数设计[J]. 测绘学报, 2021, 50(7): 982-989. |
[7] | 朋子涵, 高成发, 刘永胜, 张瑞成, 尚睿. 手机GNSS数据质量提取的变分模态分解法[J]. 测绘学报, 2021, 50(4): 475-486. |
[8] | 高为广, 苗维凯, 陈谷仓, 加松. 北斗系统GEO/IGSO/MEO卫星观测信息随机特性评估与分析[J]. 测绘学报, 2020, 49(12): 1511-1522. |
[9] | 周乐韬, 黄丁发, 袁林果, 冯威, 龚晓颖, 田玉淼, 张熙, 赵英豪. 基于状态和残差的北斗基准站观测数据表达与信息分级[J]. 测绘学报, 2020, 49(10): 1265-1274. |
[10] | 赵爽, 王振杰, 刘慧敏. 顾及声线入射角的水下定位随机模型[J]. 测绘学报, 2018, 47(9): 1280-1289. |
[11] | 杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7): 893-898. |
[12] | 范雕, 李姗姗, 孟书宇, 邢志斌, 冯进凯, 张驰. 联合多源重力数据反演菲律宾海域海底地形[J]. 测绘学报, 2018, 47(10): 1307-1315. |
[13] | 高猛, 徐爱功, 祝会忠, 葛茂荣, 杨秋实. BDS网络RTK参考站三频整周模糊度解算方法[J]. 测绘学报, 2017, 46(4): 442-452. |
[14] | 黄令勇, 吕志平, 吕浩, 宫轶松. 北斗三频伪距相关随机模型单站建模方法[J]. 测绘学报, 2016, 45(S2): 165-171. |
[15] | 姚宜斌, 胡明贤, 许超钤. 基于DREAMNET的GPS/BDS/GLONASS多系统网络RTK定位性能分析[J]. 测绘学报, 2016, 45(9): 1009-1018. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 80
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||