[1] 王世进, 秘金钟, 李得海, 等. GPS/BDS的RTK定位算法研究[J]. 武汉大学学报(信息科学版), 2014, 39(5): 621-625. WANG Shijin, BEI Jinzhong, LI Dehai, et al. Real-time Kinematic Positioning Algorithm of GPS/BDS[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 621-625. [2] 高星伟. GPS/GLONASS网络RTK的算法研究与程序实现[D]. 武汉: 武汉大学, 2002. GAO Xingwei. The Algorithmic Research of GPS/GLONASS Network RTK and Its Program Realization[D]. Wuhan: Wuhan University, 2002. [3] 祝会忠, 徐爱功, 高猛, 等. BDS网络RTK中距离参考站整周模糊度单历元解算方法[J]. 测绘学报, 2016, 45(1): 50-57. DOI: 10.11947/j.AGCS.2016.20140525. ZHU Huizhong, XU Aigong, GAO Meng, et al. The Algorithm of Single-epoch Integer Ambiguity Resolution between Middle-range BDS Network RTK Reference Stations[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1): 50-57. DOI: 10.11947/j.AGCS.2016.20140525. [4] 段举举, 沈云中. GPS/GLONASS组合静态相位相对定位算法[J]. 测绘学报, 2012, 41(6): 825-830. DUAN Juju, SHEN Yunzhong. An Algorithm of Combined GPS/GLONASS Static Relative Positioning[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(6): 825-830. [5] 李金龙. 北斗/GPS多频实时精密定位理论与算法[J]. 测绘学报, 2015, 44(11): 1297. DOI: 10.11947/j.AGCS.2015.20150254. LI Jinlong. BDS/GPS Multi-frequency Real-time Kinematic Positioning Theory and Algorithms[J]. Acta Geodaetica et Cartographica Sinica, 2015(11): 1297. DOI: 10.11947/j.AGCS.2015.20150254. [6] 张绍成. 基于GPS/GLONASS集成的CORS网络大气建模与RTK算法实现[D]. 武汉: 武汉大学, 2010. ZHANG Shaocheng. The GPS/GLONASS Integrated CORS Network Atmosphere Modeling and RTK Algorithm Implementation[D]. Wuhan: Wuhan University, 2010. [7] 高旺, 高成发, 潘树国, 等. 北斗三频宽巷组合网络RTK单历元定位方法[J]. 测绘学报, 2015, 44(6): 641-648. DOI: 10.11947/j.AGCS.2015.20140308. GAO Wang, GAO Chengfa, PAN Shuguo, et al. Single-epoch Positioning Method in Network RTK with BDS Triple-frequency Widelane Combinations[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6): 641-648. DOI: 10.11947/j.AGCS.2015.20140308. [8] 张晶晶. BDS网络RTK虚拟参考站数据生成的算法研究[D]. 北京: 中国测绘科学研究院, 2014. ZHANG Jingjing. Algorithm of Generating VRS Data for Compass Navigation System[D]. Beijing: Chinese Academy of Surveying and Mapping, 2014. [9] 祝会忠. 基于非差误差改正数的长距离单历元GNSS网络RTK算法研究[D]. 武汉: 武汉大学, 2012. ZHU Huizhong. The Study of GNSS Network RTK Algorithm between Long Range at Single Epoch Using Un-difference Error Corrections[D]. Wuhan: Wuhan University, 2012. [10] 张明, 刘晖, 丁志刚, 等. 基于序贯平差的长距离基准站间模糊度快速固定[J]. 武汉大学学报(信息科学版), 2015, 40(3): 366-371. ZHANG Ming, LIU Hui, DING Zhigang, et al. Fast Ambiguity Resolution between Long-range Base Stations Based on Sequential Adjustment[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 366-371. [11] 唐卫明, 刘经南, 施闯, 等. 三步法确定网络RTK基准站双差模糊度[J]. 武汉大学学报(信息科学版), 2007, 32(4): 305-308. TANG Weiming, LIU Jingnan, SHI Chuang, et al. Three Steps Method to Determine Double Difference Ambiguities Resolution of Network RTK Reference Station[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 305-308. [12] 鄢子平, 丁乐乐, 黄恩兴, 等. 网络RTK参考站间模糊度固定新方法[J]. 武汉大学学报(信息科学版), 2013, 38(3): 295-298, 323. YAN Ziping, DING Lele, HUANG Enxing, et al. A New Method of Ambiguity Resolution in Network RTK between Reference Stations[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 295-298, 323. [13] 高星伟, 陈锐志, 赵春梅. 网络RTK算法研究与实验[J]. 武汉大学学报(信息科学版), 2009, 34(11): 1350-1353. GAO Xingwei, CHEN Ruizhi, ZHAO Chunmei. A Network RTK Algorithm and Its Test[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1350-1353. [14] LI Bofeng, SHEN Yunzhong, FENG Yanming, et al. GNSS Ambiguity Resolution with Controllable Failure Rate for Long Baseline Network RTK[J]. Journal of Geodesy, 2014, 88(2): 99-112. [15] TEUNISSEN P J G. The Least-squares Ambiguity Decorrelation Adjustment: A Method for Fast GPS Integer Ambiguity Estimation[J]. Journal of Geodesy, 1995, 70(1-2): 65-82. [16] BÖHM J, MÖLLER G, SCHINDELEGGER M, et al. Development of an Improved Empirical Model for Slant Delays in the Troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3): 433-441. [17] BOEHM J, NIELL A, TREGONING P, et al. Global Mapping Function (GMF): A New Empirical Mapping Function Based on Numerical Weather Model Data[J]. Geophysical Research Letters, 2006, 33(7): L07304. [18] AL-SHAERY A, ZHANG S, RIZOS C. An Enhanced Calibration Method of GLONASS Inter-channel Bias for GNSS RTK[J]. GPS Solutions, 2013, 17(2): 165-173. [19] WANNINGER L. Carrier-phase Inter-frequency Biases of GLONASS Receivers[J]. Journal of Geodesy, 2012, 86(2): 139-148. [20] BANVILLE S, COLLINS P, LAHAYE F. GLONASS Ambiguity Resolution of Mixed Receiver Types without External Calibration[J]. GPS Solutions, 2013, 17(3): 275-282. [21] YAO Yibin, XU Chaoqian, SHI Junbo, et al. ITG: A New Global GNSS Tropospheric Correction Model[J]. Scientific Reports, 2015, 5: 10273. [22] YAO Yibin, ZHANG Bao, XU Chaoqian, et al. A Global Empirical Model for Estimating Zenith Tropospheric Delay[J]. Science China Earth Sciences, 2016, 59(1): 118-128. [23] 姚宜斌, 张豹, 严凤, 等. 两种精化的对流层延迟改正模型[J]. 地球物理学报, 2015, 58(5): 1492-1501. YAO Yibin, ZHANG Bao, YAN Feng, et al. Two New Sophisticated Models for Tropospheric Delay Corrections[J]. Chinese Journal of Geophysics, 2015, 58(5): 1492-1501. |