| [1] |
SUN Heping, BAO Lifeng, CHEN Shi, et al. Research progress in surface and marine gravimetry[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 19-32.
|
| [2] |
ZINGERLE P, PAIL R, GRUBER T, et al. The combined global gravity field model XGM2019e[J]. Journal of Geodesy, 2020, 94(7): 66.
|
| [3] |
CARL B. The Earth's gravity field and plate tectonics[J]. Tectonophysics, 1991, 187(1/2/3): 69-89.
|
| [4] |
SANDWELL D T, MÜLLER R D, SMITH W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205): 65-67.
|
| [5] |
HWANG C, CHANG E T Y. Seafloor secrets revealed[J]. Science, 2014, 346(6205): 32-33.
|
| [6] |
HWANG C, HSIAO Y S, SHIH H C, et al. Geodetic and geophysical results from a Taiwan airborne gravity survey: data reduction and accuracy assessment[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B4): 57.
|
| [7] |
李真, 郭金运, 孙中苗, 等. 基于ICESat-2多波束激光测高数据的全球海洋重力异常反演分析[J]. 测绘学报, 2024, 53(2): 252-262. DOI: .
doi: 10.11947/j.AGCS.2024.20230207
|
|
LI Zhen, GUO Jinyun, SUN Zhongmiao, et al. Global marine gravity anomalies recovered from multi-beam laser altimeter data of ICESat-2[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 252-262. DOI: .
doi: 10.11947/j.AGCS.2024.20230207
|
| [8] |
YU Y, SANDWELL D T, DIBARBOURE G, et al. Accuracy and resolution of SWOT altimetry: foundation seamounts[J]. Earth and Space Science, 2024, 11(6): e2024EA003581.
|
| [9] |
GUO Jinyun, LUO Hongxin, ZHU Chengcheng, et al. Accuracy comparison of marine gravity derived from HY-2A/GM and CryoSat-2 altimetry data: a case study in the Gulf of Mexico[J]. Geophysical Journal International, 2022, 230(2): 1267-1279.
|
| [10] |
ABDALLA S, ABDEH KOLAHCHI A, ABLAIN M, et al. Altimetry for the future: building on 25 years of progress[J]. Advances in Space Research, 2021, 68(2): 319-363.
|
| [11] |
LI Zhen, GUO Jinyun, JI Bing, et al. A review of marine gravity field recovery from satellite altimetry[J]. Remote Sensing, 2022, 14(19): 4790.
|
| [12] |
孙中苗, 管斌, 翟振和, 等. 海洋卫星测高及其反演全球海洋重力场和海底地形模型研究进展[J]. 测绘学报, 2022, 51(6): 923-934. DOI: .
doi: 10.11947/j.AGCS.2022.20220069
|
|
SUN Zhongmiao, GUAN Bin, ZHAI Zhenhe, et al. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 923-934. DOI: .
doi: 10.11947/j.AGCS.2022.20220069
|
| [13] |
SANDWELL D T, GARCIA E, SOOFI K, et al. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1[J]. 2013, 32(8): 892-899.
|
| [14] |
VIGNUDELLI S, BIROL F, BENVENISTE J, et al. Satellite altimetry measurements of sea level in the coastal zone[J]. Surveys in Geophysics, 2019, 40(6): 1319-1349.
|
| [15] |
FAN Xin, GUO Jinyun, ZHANG Huiying, et al. A two-step method of crossover adjustment for satellite altimeter data[J]. Advances in Space Research, 2025, 75(1): 219-232.
|
| [16] |
ZAKI A, MANSI A H, SELIM M, et al. Comparison of satellite altimetric gravity and global geopotential models with shipborne gravity in the Red Sea[J]. Marine Geodesy, 2018, 41(3): 258-269.
|
| [17] |
ABDALLAH M, ABD EL GHANY R, RABAH M, et al. Comparison of recently released satellite altimetric gravity models with shipborne gravity over the Red Sea[J]. The Egyptian Journal of Remote Sensing and Space Science, 2022, 25(2): 579-592.
|
| [18] |
LI Qianqian, BAO Lifeng, WANG Yong. Accuracy evaluation of altimeter-derived gravity field models in offshore and coastal regions of China[J]. Frontiers in Earth Science, 2021, 9: 722019.
|
| [19] |
YU Daocheng, HWANG C, ANDERSEN O B, et al. Gravity recovery from SWOT altimetry using geoid height and geoid gradient[J]. Remote Sensing of Environment, 2021, 265: 112650.
|
| [20] |
SUN Mingzhi, FENG Wei, YU Daocheng, et al. Analysing the impact of SWOT observation errors on marine gravity recovery[J]. Geophysical Journal International, 2024, 237(2): 862-871.
|
| [21] |
WANG Jianbo, XU Yongsheng, ZHANG Qingjun, et al. Improving high-frequency marine gravity anomaly recovery: the efficacy of SWOT wide-swath altimetry[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 7505905.
|
| [22] |
YU Yao, SANDWELL D T, DIBARBOURE G. Abyssal marine tectonics from the SWOT mission[J]. Science, 2024, 386(6727): 1251-1256.
|
| [23] |
ANDERSEN O B, KNUDSEN P, BERRY P A M. The DNSC08GRA global marine gravity field from double retracked satellite altimetry[J]. Journal of Geodesy, 2010, 84(3): 191-199.
|
| [24] |
ZHANG Shengjun, ZHOU Runsheng, JIA Yongjun, et al. Performance of HaiYang-2 altimetric data in marine gravity research and a new global marine gravity model NSOAS22[J]. Remote Sensing, 2022, 14(17): 4322.
|
| [25] |
ZHANG Shengjun, CHEN Xu, ZHOU Runsheng, et al. NSOAS24: a new global marine gravity model derived from multi-satellite sea surface slopes[J]. Geoscientific Model Development, 2025, 18(4): 1221-1239.
|
| [26] |
ZHU Chengcheng, GUO Jinyun, YUAN Jiajia, et al. SDUST2021GRA: global marine gravity anomaly model recovered from Ka-band and Ku-band satellite altimeter data[J]. Earth System Science Data, 2022, 14(10): 4589-4606.
|
| [27] |
LI Zhen, GUO Jinyun, ZHU Chengcheng, et al. The SDUST2022GRA global marine gravity anomalies recovered from radar and laser altimeter data: contribution of ICESat-2 laser altimetry[J]. Earth System Science Data, 2024, 16(9): 4119-4135.
|
| [28] |
HUANG Motao, DENG Kailiang, WU Taiqi, et al. Research and evaluation on key technological indicators for airborne and shipborne gravimetry[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3): 44-54.
|
| [29] |
FAN Diao, LI Shanshan, MENG Shuyu, et al. Bathymetric prediction from multi-source satellite altimetry gravity data[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 49-58.
|
| [30] |
CHEN Xiaodong, ZHONG Min, SUN Mingzhi, et al. Recovering bathymetry using BP neural network combined with modified gravity-geologic method: a case study in the South China Sea[J]. Remote Sensing, 2024, 16(21): 4023.
|
| [31] |
LI Qianqian, ZHAI Zhenhe, BAO Lifeng, et al. A convolutional neural network to optimize multi-mission satellite altimeter fusion for improving the marine gravity field[J]. Earth, Planets and Space, 2024, 76(1): 129.
|
| [32] |
WELCH P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms[J]. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2): 70-73.
|
| [33] |
WESSEL P, LUIS J F, UIEDA L, et al. The generic mapping tools version 6[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 5556-5564.
|
| [34] |
李杨, 周江存, 祝程程, 等. 基于模拟数据评估SWOT卫星KaRIn数据的测量误差对反演海洋重力场的影响[J]. 地球物理学报, 2024, 67(11): 4053-4064.
|
|
LI Yang, ZHOU Jiangcun, ZHU Chengcheng, et al. Assessing the impacts of measurement errors in SWOT satellite KaRIn data on the inversion of marine gravity based on simulated data[J]. Chinese Journal of Geophysics, 2024, 67(11): 4053-4064.
|
| [35] |
GUO Hengyang, WAN Xiaoyun, WANG Huaibing. Validation of just-released SWOT L2 KaRIn beta prevalidated data based on restore the marine gravity field and its application[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 7878-7887.
|
| [36] |
HWANG C, YU Daocheng. Transforming coastal mapping from space[J]. Science, 2024, 386(6727): 1222-1223.
|