测绘学报 ›› 2016, Vol. 45 ›› Issue (3): 339-346.doi: 10.11947/j.AGCS.2016.20150022

• 摄影测量学与遥感 • 上一篇    下一篇

纹理特征向量与最大化熵法相结合的SAR影像非监督变化检测

庄会富, 邓喀中, 范洪冬   

  1. 中国矿业大学国土环境与灾害监测国家测绘地理信息局重点实验室, 江苏 徐州 221116
  • 收稿日期:2015-01-12 修回日期:2015-08-04 出版日期:2016-03-20 发布日期:2016-03-25
  • 通讯作者: 邓喀中,E-mail:kzdeng@cumt.edu.cn E-mail:kzdeng@cumt.edu.cn
  • 作者简介:庄会富(1990-),男,博士生,研究方向为遥感影像融合与解译。
  • 基金资助:
    测绘地理信息公益性行业科研专项经费项目(201412016);国家自然科学基金(41272389);江苏省基础研究计划(自然科学基金)青年基金(BK20130174)

SAR Images Unsupervised Change Detection Based on Combination of Texture Feature Vector with Maximum Entropy Principle

ZHUANG Huifu, DENG Kazhong, FAN Hongdong   

  1. China University of Mining and Technology, Key Laboratory for Land Environment and Disaster Monitoring of SBSM, Xuzhou 221116, China
  • Received:2015-01-12 Revised:2015-08-04 Online:2016-03-20 Published:2016-03-25
  • Supported by:
    Research and Special Funding of Mapping Geographic Information Public Service Sectors(No.201412016);The National Natural Science Foundation of China(No.41272389);Project Supported by the Basic Research Project of Jiangsu Province(Natural Science Foundation)(No.BK20130174)

摘要: 合成孔径雷达(SAR)影像具有明显的斑点噪声,在变化检测中,一般需要考虑空间邻域信息。本文结合SAR影像丰富的纹理信息,提出一种考虑空间邻域信息的高分辨率SAR影像非监督变化检测方法,用基于灰度共生矩阵(GLCM)的32维纹理特征向量构造差异影像。通过最大化熵法自动选取阈值,对精度指标随窗口大小的变化进行回归分析,得到适合于变化检测的窗口为11×11。试验表明,本文方法优于马尔科夫随机场法,可以减小斑点噪声的影响,有效提高高分辨率SAR影像变化检测的精度。

关键词: 灰度共生矩阵, 纹理特征向量, 最大化熵法, SAR, 变化检测

Abstract: Generally, spatial-contextual information would be used in change detection because there is significant speckle noise in synthetic aperture radar(SAR) images. In this paper, using the rich texture information of SAR images, an unsupervised change detection approach to high-resolution SAR images based on texture feature vector and maximum entropy principle is proposed. The difference image is generated by using the 32-dimensional texture feature vector of gray-level co-occurrence matrix(GLCM). And the automatic threshold is obtained by maximum entropy principle. In this method, the appropriate window size to change detection is 11×11 according to the regression analysis of window size and precision index. The experimental results show that the proposed approach is better could both reduce the influence of speckle noise and improve the detection accuracy of high-resolution SAR image effectively; and it is better than Markov random field.

Key words: GLCM, texture feature vector, maximum entropy principle, SAR, change detection

中图分类号: