
测绘学报 ›› 2019, Vol. 48 ›› Issue (4): 460-472.doi: 10.11947/j.AGCS.2019.20180429
乌萌1,2,3, 郝金明1, 付浩4, 高扬2,3, 张辉5
收稿日期:2018-09-18
修回日期:2019-02-02
出版日期:2019-04-20
发布日期:2019-05-15
作者简介:乌萌(1983-),女,博士生,工程师,研究方向为导航与位置服务。E-mail:wumeng19nudt@163.com
基金资助:WU Meng1,2,3, HAO Jinming1, FU Hao4, GAO Yang2,3, ZHANG Hui5
Received:2018-09-18
Revised:2019-02-02
Online:2019-04-20
Published:2019-05-15
Supported by:摘要: 针对地面移动测量系统(MMS)和无人驾驶车(AV)平台双目立体相机采集的图像序列进行实时载体位姿估计优化问题,提出利用光流运动场模型的载体位姿与图像光流矢量间关系,将光流矢量解耦为3个平移分量、3个旋转分量和一个深度分量,推导分析了解耦后单分量、组合分量误差对位姿估计的影响,利用仿真和真实数据试验,验证了不同模型下单分量、组合分量误差分离模型的有效性,并结合组合分量误差分离模型,提出了双目视觉里程计位姿估计的解耦光流运动场位姿优化算法。试验结果表明:该算法可在与初始估计几乎同等计算效率条件下,将载体横向平移平均误差由4.75%降低至2.2%,即横向平移误差平均降低了53.6%;将载体前向平移平均误差由2.2%降低至1.9%,即前向平移误差平均降低了15.4%,长时间运行累积误差率较低,能够满足低功耗高效率计算条件下的组合导航实时载体位姿估计需求。
中图分类号:
乌萌, 郝金明, 付浩, 高扬, 张辉. 利用解耦光流运动场模型的双目视觉里程计位姿优化方法[J]. 测绘学报, 2019, 48(4): 460-472.
WU Meng, HAO Jinming, FU Hao, GAO Yang, ZHANG Hui. A stereo visual odometry pose optimization method via flow-decoupled motion field model[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4): 460-472.
| [1] 高俊. 图到用时方恨少, 重绘河山待后生——《测绘学报》60年纪念与前瞻[J]. 测绘学报, 2017, 46(10):1219-1225. DOI:10.11947/j.AGCS.2017.20170503. GAO Jun. The 60 anniversary and prospect of acta geodaetica et cartographica sinica[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1219-1225. DOI:10.11947/j.AGCS.2017.20170503. [2] 程传奇, 郝向阳, 李建胜, 等. 移动机器人视觉动态定位的稳健高斯混合模型[J]. 测绘学报, 2018, 47(11):1446-1456. DOI:10.11947/j.AGCS.2018.20170649. CHENG Chuanqi, HAO Xiangyang, LI Jiansheng, et al. Robust Gaussian mixture model for mobile robots' vision-based kinematical localization[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11):1446-1456. DOI:10.11947/j.AGCS.2018.20170649. [3] 高翔, 张涛, 刘毅, 等. 视觉SLAM十四讲:从理论到实践[M]. 北京:电子工业出版社, 2017. GAO Xiang, ZHANG Tao, LIU Yi, et al. 14 lectures on visual SLAM:from theory to practice[M]. Beijing:Publishing House of Electronics Industry, 2017. [4] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016. ZHOU Zhihua. Machine learning[M]. Beijing:Tsinghua University Press, 2016. [5] THRUN S, BURGARD W, FOX D. Probabilistic robotics[M]. Cambridge:The MIT Press, 2006. [6] HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. Cambridge:Cambridge University Press, 2004. [7] 张晓东. 可量测影像与GPS/IMU融合高精度定位定姿方法研究[D]. 郑州:信息工程大学, 2013. ZHANG Xiaodong. Research on high precision position and orientation method based on digital measurable image and GPS/IMU integration[D]. Zhengzhou:Information Engineering University, 2013. [8] 程传奇. 非结构场景下移动机器人自主导航关键技术研究[D]. 郑州:信息工程大学, 2018. CHENG Chuanqi. Research on the key technologies of autonomous navigation for mobile robots in unstructured environments[D]. Zhengzhou:Information Engineering University, 2018. [9] 陈驰, 杨必胜, 田茂, 等. 车载MMS激光点云与序列全景影像自动配准方法[J]. 测绘学报, 2018, 47(2):215-224. DOI:10.11947/j.AGCS.2018.20170520. CHEN Chi, YANG Bisheng, TIAN Mao, et al. Automatic registration of vehicle-borne mobile mapping laser point cloud and sequent panoramas[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2):215-224. DOI:10.11947/j.AGCS.2018.20170520. [10] 魏崇阳. 城市环境中基于三维特征点云的建图与定位技术研究[D]. 长沙:国防科学技术大学, 2016. WEI Chongyang. 3D feature point clouds-based research on mapping and localization in urban environments[D]. Changsha:National University of Defense Technology, 2016. [11] NISTER D, NARODITSKY O, BERGEN J. Visual odometry[C]//Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA:IEEE, 2004. [12] SCARAMUZZA D, FRAUNDORFER F. Visual odometry Part I:the first 30 years and fundamentals[J]. IEEE Robotics and Automation Magazine, 2011, 18(4):80-92. [13] MUR-ARTAL R, MONTIEL J M M, TARDÓS J D. ORB-SLAM:a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5):1147-1163. [14] FORSTER C, ZHANG Zichao, GASSNER M, et al. SVO:semidirect visual odometry for monocular and multicamera systems[J]. IEEE Transactions on Robotics, 2017, 33(2):249-265. [15] PIZZOLI M, FORSTER C, SCARAMUZZA D. REMODE:Probabilistic, monocular dense reconstruction in real time[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China:IEEE, 2014:2609-2616. [16] NEWCOMBE R A, LOVEGROVE S J, DAVISON A J. DTAM:dense tracking and mapping in real-time[C]//Proceedings of the 2011 International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011:2320-2327. [17] ENGEL J, SCHÖPS T, CREMERS D. LSD-SLAM:Large-scale direct monocular SLAM[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland:Springer, 2014:834-849. [18] ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3):611-625. [19] BADINO H, KANADE T. A head-wearable short-baseline stereo system for the simultaneous estimation of structure and motion[C]//Proceedings of the IAPR Conference on Machine Vision Application. Nara, Japan, 2011:185-189. [20] KITT B, GEIGER A, LATEGAHN H. Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme[C]//Proceedings of 2010 IEEE Intelligent Vehicles Symposium. San Diego, CA, USA:IEEE, 2010. [21] STEIN G P, MANO O, SHASHUA A. A robust method for computing vehicle ego-motion[C]//Proceedings of the 2000 IEEE Intelligent Vehicles Symposium Dearborn, MI, USA:IEEE, 2000. [22] SCARAMUZZA D, FRAUNDORFER F, SIEGWART R. Real-time monocular visual odometry for on-road vehicles with 1-point RANSAC[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan:IEEE, 2009. [23] BUCZKO M, WILLERT V. Flow-decoupled normalized reprojection error for visual odometry[C]//Proceedings of the 19th IEEE International Conference on Intelligent Transportation Systems. Rio de Janeiro, Brazil:IEEE, 2016:1161-1167. [24] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA:IEEE, 2012. [25] 章毓晋. 计算机视觉教程[M]. 北京:人民邮电出版社, 2011. ZHANG Yujin. A course of computer vision[M]. Beijing:Posts & Telecom Press, 2011. [26] MALIK J. Dynamic perspective[EB/OL].[2015-05-16]. http://www-inst.eecs.berkeley.edu/~cs280/sp15/lectures/4.pdf. [27] SABATINI S, CORNO M, FIORENTI S, et al. Vision-based pole-like obstacle detection and localization for urban mobile robots[C]//Proceedings of 2018 IEEE Conference on Intelligent Vehicles Symposium. Changshu, China:IEEE, 2018. |
| [1] | 曹云刚, 杨鹏, 龚江波, 朱高, 沈星宇. 空间关系增强与异构特征融合相结合的道路信息提取方法[J]. 测绘学报, 2025, 54(12): 2219-2232. |
| [2] | 张津, 冯凡, 戴晨光, 张振超, 于英, 刘冰. 基于CNN-ViT混合特征优化的小样本高光谱图像分类[J]. 测绘学报, 2025, 54(12): 2233-2246. |
| [3] | 侯昭阳, 闫浩文, 张黎明, 马荣娟, 屈睿涛. 基于耦合神经P系统与区块链的遥感影像零水印版权保护方法[J]. 测绘学报, 2025, 54(12): 2247-2261. |
| [4] | 熊强. 基于空间结构特征的多模态遥感图像匹配方法研究[J]. 测绘学报, 2025, 54(12): 2288-2288. |
| [5] | 冯雨宁. 青藏高原多级气候分区研究[J]. 测绘学报, 2025, 54(12): 2293-2293. |
| [6] | 童小华, 黄荣, 曹佳瑞, 刘宸, 王蓉, 徐聿升, 叶真, 金雁敏, 刘世杰, 柳思聪, 冯永玖, 谢欢. 月球与近地行星三维形貌重建的智能方法综述:研究进展与未来挑战[J]. 测绘学报, 2025, 54(11): 1917-1933. |
| [7] | 武昊, 侯东阳, 张俊, 张平, 刘玉轩, 杜磊, 康路, 程滔, 陈军. 动态服务计算支持的自然资源遥感监测监管平台关键技术研究[J]. 测绘学报, 2025, 54(11): 1992-2008. |
| [8] | 龚希, 陈占龙, 郑恒强, 胡胜, 张洪艳. 融合迁移特征空间和语义信息的遥感影像场景分类方法[J]. 测绘学报, 2025, 54(11): 2009-2025. |
| [9] | 衣雪峰. 点云与影像融合的隧洞岩体结构信息自动提取方法研究[J]. 测绘学报, 2025, 54(11): 2098-2098. |
| [10] | 马开森. 地面激光雷达林分点云单木分离及参数提取研究[J]. 测绘学报, 2025, 54(11): 2100-2100. |
| [11] | 师悦龄. 基于SAR干涉和偏移量追踪估计的高山冰川冰湖动态演变监测及其关联特征分析[J]. 测绘学报, 2025, 54(11): 2103-2103. |
| [12] | 李康宁. 全球城市热岛遥感研究:时空特征、变化模式及驱动分析[J]. 测绘学报, 2025, 54(11): 2105-2105. |
| [13] | 黄鑫, 叶健, 刘骋冰, 曾秋雨, 郭万新, 郭志凯. 一种兼具精度与可解释性的Stacking-SHAP滑坡易发性预测集成方法[J]. 测绘学报, 2025, 54(10): 1826-1840. |
| [14] | 熊新, 靳国旺, 崔瑞兵, 李烁, 杨鹤. 利用秩自相似特征的光学和SAR图像快速匹配方法[J]. 测绘学报, 2025, 54(10): 1852-1862. |
| [15] | 张志力, 姜慧伟, 胡翔云. 面向极简交互的遥感地物精确批量提取框架[J]. 测绘学报, 2025, 54(10): 1863-1876. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||