测绘学报 ›› 2020, Vol. 49 ›› Issue (11): 1438-1450.doi: 10.11947/j.AGCS.2020.20190370

• 摄影测量学与遥感 • 上一篇    下一篇

车载激光点云道路边界提取的Snake方法

方莉娜1,2,3, 卢丽靖1,2,3, 赵志远1,2,3, 王昀昀4, 陈崇成1,2,3   

  1. 1. 福州大学地理空间信息技术国家地方联合工程研究中心, 福建 福州 350002;
    2. 空间数据挖掘与信息共享教育部重点实验室, 福建 福州 350002;
    3. 福州大学数字中国研究院, 福建 福州 350002;
    4. 福建省制图院, 福建 福州 350001
  • 收稿日期:2019-09-04 修回日期:2020-06-10 发布日期:2020-11-25
  • 通讯作者: 赵志远 E-mail:zyzhao@fzu.edu.cn
  • 作者简介:方莉娜(1983-),女,博士,助理研究员,研究方向为激光雷达数据处理与三维重建。E-mail:fangln@fzu.edu.cn
  • 基金资助:
    国家自然科学基金(42071446);福建省自然科学基金(2017J01465);中国博士后科学基金(2017M610391)

Road boundaries extraction from mobile laser scanning point clouds based on discrete point Snake

FANG Lina1,2,3, LU Lijing1,2,3, ZHAO Zhiyuan1,2,3, WANG Yunyun4, CHEN Chongcheng1,2,3   

  1. 1. National Engineering Research Centre of Geospatial Information Technology, Fuzhou University, Fuzhou 350002, China;
    2. Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Fuzhou University, Fuzhou 350002, China;
    3. Academy of Digital China, Fuzhou University, Fuzhou 350002, China;
    4. Fujian Mapping Institute, Fuzhou 350001, China
  • Received:2019-09-04 Revised:2020-06-10 Published:2020-11-25
  • Supported by:
    The National Natural Science Foundation of China (No. 42071446);The National Natural Science Foundation of Fujian Province, China (No. 2017J01465);China Postdoctoral Science Foundation (No. 2017M610391)

摘要: 针对车载激光点云中道路边界提取困难,自动化程度低的问题,提出一种基于离散点Snake的车载激光点云道路边界提取方法。不同于传统基于图像建立Snake,本文直接基于离散点建立Snake模型。先利用伪轨迹点数据,确定初始轮廓位置,参数化不同类型的道路边界初始轮廓;然后基于离散点构建适合多类型道路边界的Snake模型,定义模型内部、外部和约束能量,通过能量函数最小化推动轮廓曲线移动到显著道路边界特征点处,实现不同道路边界的精细提取。本文试验采用3份不同城市场景的车载激光点云数据验证本文方法的有效性,道路边界提取结果的准确率达到97.62%,召回率达到98.04%,F1-Measure值达到97.83%以上,且提取的道路边界结果与软件交互提取的结果有较好的吻合度。试验结果表明,本文方法能够修正噪声、断裂等数据质量对道路边界提取的影响,能够实现各类复杂城市环境中不同形状道路边界的提取,具有较强的稳健性和适用性。

关键词: 车载激光点云, 主动轮廓模型(Snake), 道路提取, 梯度, 能量函数

Abstract: Due to large volume of data, uneven spatial distribution of point densities, and complex scene, it is difficult to automatically extract and delineate road boundaries from mobile laser scanning (MLS) point clouds. This paper proposed a method for extracting road boundaries from MLS point clouds based on Snake. Different from the traditional Snake model defined within 2D image, we modified the Snake model directly based on 3D point clouds. Firstly, we developed a way of initializing Snake curves using pseudo-trajectory data to match multi-type road boundaries. Then, the Snake’s energy function was designed with internal, external and constrained energy terms derived from Snake curve points with their neighborhood points. Finally, the road boundaries were precisely extracted by minimizing the Snake’s energy function. Experiments were undertaken to evaluate the validities of the proposed algorithm with three different urban scene datasets acquired by different MLS system. Quantitative evaluations on the selected MLS datasets indicate that the Precision, Recall and F1-Measure of road boundaries extraction results were over 97.62%, 98.04%, 97.83%, respectively, which validate that the proposed method proved a promising and robust solution for regular and irregular road boundaries extraction in complex urban environments.

Key words: mobile laser scanning point clouds, active contour model (Snake), road boundaries extraction, gradient vector, energy function

中图分类号: