测绘学报 ›› 2020, Vol. 49 ›› Issue (12): 1575-1582.doi: 10.11947/j.AGCS.2020.20190313

• 摄影测量学与遥感 • 上一篇    下一篇

Landsat影像冰川提取的上下文感知语义分割网络法

王忠武1, 王志盼2,3,4, 尤淑撑1, 雷帆3,4, 曹里3,4, 杨凯钧3,4   

  1. 1. 自然资源部国土卫星遥感应用中心, 北京 100048;
    2. 邵阳学院城乡建设学院, 湖南 邵阳 422000;
    3. 湖南省国土资源规划院, 湖南 长沙 410007;
    4. 国土资源评价与利用湖南省重点实验室, 湖南 长沙 410007
  • 收稿日期:2019-07-26 修回日期:2019-12-25 发布日期:2020-12-25
  • 通讯作者: 王志盼 E-mail:wang749195@outlook.com
  • 作者简介:王忠武(1983-),男,博士,副研究员,研究方向为自然资源遥感调查监测等。E-mail:23159140@qq.com
  • 基金资助:
    澜沧江-湄公河合作专项基金(澜沧江-湄公河流域水资源分布和土地利用动态遥感监测技术应用示范)

Landsat image glacier extraction based on context semantic segmentation network

WANG Zhongwu1, WANG Zhipan2,3,4, YOU Shucheng1, LEI Fan3,4, CAO Li3,4, YANG Kaijun3,4   

  1. 1. Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China;
    2. School of Urban-Rural Development, Shaoyang University, Shaoyang 422000, China;
    3. Hunan Provincial Land and Resources Planning Institute, Changsha 410007, China;
    4. Hunan Key Laboratory of Land Resources Evaluation and Utilization, Changsha 410007, China
  • Received:2019-07-26 Revised:2019-12-25 Published:2020-12-25
  • Supported by:
    Special Fund for Lancang-Mekong Cooperation (Application Research of Water Resources and Land Use Monitoring and Evaluation in the Lancang-Mekong River Region)

摘要: 针对冰川提取存在云阴影、山体阴影、结冰湖泊等同物异谱、同谱异物导致难以有效区分的问题,设计了一种用于冰川提取的上下文感知深度学习语义分割网络。首先引入resnet50作为基准编码网络,以实现冰川特征提取的精度和效率平衡,其次针对现有语义分割网络存在上下文信息学习不足方面,设计了包括空洞卷积组块和最大池化组块的上下文信息提取层,以便更好地提取冰川的上下文信息。选择多景样本数据和验证数据的多源遥感影像进行试验,与现有基于特征指数的冰川提取方法、其他深度学习语义分割网络方法进行定性和定量对比,结果表明本文网络方法在结冰湖面等误提取,阴影的漏提取,以及提取结果完整性等方面,具有较好的效果,验证了本文方法的有效性与稳健性。

关键词: 深度学习, 语义分割, 冰川提取

Abstract: According to the glacier characteristics of remote sensing image, a context-aware deep learning semantic segmentation network for glacier extraction is proposed based on the glacier characteristics of remote sensing image. Firstly, resnet50 is introduced as the feature extraction network to achieve the accuracy and efficiency balance of glacier feature extraction. Secondly, the context-information learning of the existing semantic segmentation network is designed. The context information including the dilated-convolutional block and the max-pooled block is designed to better extract the context information of the glacier. Multiple remote sensing trained images and tested images are selected for experiment, which is qualitatively and quantitatively compared with the existing glacier feature index extraction method and other semantic segmentation network methods. The results show that the network method in the frozen lake surface, the leakage of the mountain shadow, cloud shadow and the integrity of the extraction results have a good effect, which verifies the effectiveness and robustness of the proposed method.

Key words: deep learning, semantic segmentation, glacier extraction

中图分类号: