测绘学报 ›› 2020, Vol. 49 ›› Issue (4): 499-508.doi: 10.11947/j.AGCS.2020.20190044

• 摄影测量学与遥感 • 上一篇    下一篇

高分辨率遥感影像语义分割的半监督全卷积网络法

耿艳磊1,2, 陶超1,2, 沈靖1,2, 邹峥嵘1,2   

  1. 1. 中南大学地球科学与信息物理学院, 湖南 长沙 410083;
    2. 中南大学有色金属成矿预测与地质环境监测教育部重点实验室, 湖南 长沙 410083
  • 收稿日期:2019-01-24 修回日期:2019-07-11 发布日期:2020-04-17
  • 通讯作者: 陶超 E-mail:kingtaochao@126.com
  • 作者简介:耿艳磊(1993-),男,硕士,研究方向为高分辨率遥感影像智能解译。E-mail:gengyanlei@csu.edu.cn
  • 基金资助:
    国家自然科学基金(41771458);国家重点研发项目(2018YFB0504501);湖湘青年英才计划(2018RS3012);湖南省国土厅国土资源科研项目(2017-13);湖南省教育厅创新平台开放基金项目(18K005)

High-resolution remote sensing image semantic segmentation based on semi-supervised full convolution network method

GENG Yanlei1,2, TAO Chao1,2, SHEN Jing1,2, ZOU Zhengrong1,2   

  1. 1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;
    2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University), Ministry of Education, Changsha 410083, China
  • Received:2019-01-24 Revised:2019-07-11 Published:2020-04-17
  • Supported by:
    The National Natural Science Foundation of China (No. 41771458);The National Key Research and Development Program (No. 2018YFB0504501);The Young Elite Scientists Sponsorship Program by Hunan province of China (No. 2018RS3012);Land and Resource Department Scientific Research Program of Hunan Province, China (No. 2017-13);Hunan Science and Technology Department Innovation Platform Open Fund Project (No. 18K005)

摘要: 在遥感领域,利用大量的标签影像数据来监督训练全卷积网络,实现影像语义分割的方法会导致标签绘制成本昂贵,而少量标签数据的使用会导致网络性能下降。针对这一问题,本文提出了一种基于半监督全卷积网络的高分辨率遥感影像语义分割方法。通过采用一种集成预测技术,同时优化有标签样本上的标准监督分类损失及无标签数据上的非监督一致性损失,来训练端到端的语义分割网络。为验证方法的有效性,分别使用ISPRS提供的德国Vaihingen地区无人机影像数据集及国产高分一号卫星影像数据进行试验。试验结果表明,与传统方法相比,无标签数据的引入可有效提升语义分割网络的分类精度并可有效降低有标签数据过少对网络学习性能的影响。

关键词: 遥感影像, 语义分割, 半监督, 全卷积网络

Abstract: In the field of remote sensing, the method of realizing image semantic segmentation by using a large amount of label image data to supervise training full convolution network will result in expensive label drawing cost, while the use of a small amount of label data would lead to network performance degradation. To solve this problem, this paper proposes a semi-supervised full convolution network based semantic segmentation method for high resolution remote sensing images. Specifically, we explore an ensemble prediction technique to train the end-to-end semantic segmentation network by simultaneously optimizing a standard supervised classification loss on labeled samples along with an additional unsupervised consistence loss term imposed on labeled and unlabeled data. In the experiments, the image data set of Vaihingen in Germany provided by ISPRS and satellite GF-1 data were used, and the experimental results show that the proposed method can effectively improve the network performance degradation caused by using only a small amount of label data.

Key words: remote sensing image, semantic segmentation, semi-supervised, full convolution network

中图分类号: