[1] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA:IEEE, 2005:886-893. [2] 方路平, 何杭江, 周国民. 目标检测算法研究综述[J]. 计算机工程与应用, 2018, 54(13):11-18, 33. FANG Luping, HE Hangjiang, ZHOU Guomin. Research overview of object detection methods[J]. Computer Engineering and Applications, 2018, 54(13):11-18, 33. [3] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [4] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359. [5] 罗楠, 孙权森, 耿蕾蕾, 等. 一种扩展SURF描述符及其在遥感图像配准中的应用[J]. 测绘学报, 2013, 42(3):383-388. LUO Nan, SUN Quansen, GENG Leilei, et al. An extended SURF descriptor and its application in remote sensing images registration[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3):383-388. [6] 杨钊霞, 邹峥嵘, 陶超, 等. 空-谱信息与稀疏表示相结合的高光谱遥感影像分类[J]. 测绘学报, 2015, 44(7):775-781. DOI:10.11947/j.AGCS.2015.20140207. YANG Zhaoxia, ZOU Zhengrong, TAO Chao, et al. Hyperspectral image classification based on the combination of spatial-spectral feature and sparse representation[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7):775-781. DOI:10.11947/j.AGCS.2015.20140207. [7] 慎利, 唐宏, 王世东, 等. 结合空间像素模板和Adaboost算法的高分辨率遥感影像河流提取[J]. 测绘学报, 2013, 42(3):344-350. SHEN Li, TANG Hong, WANG Shidong, et al. River extraction from the high resolution remote sensing images based on spatially correlated pixels template and Adaboost algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3):344-350. [8] 叶利华, 王磊, 张文文, 等. 高分辨率光学遥感场景分类的深度度量学习方法[J]. 测绘学报, 2019, 48(6):698-707. DOI:10.11947/j.AGCS.2019.20180434. YE Lihua, WANG Lei, ZHANG Wenwen, et al. Deep metric learning method for high-resolution remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6):698-707. DOI:10.11947/j.AGCS.2019.20180434. [9] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1):142-158. [10] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe:Curran Associates Inc., 2012:1097-1105. [11] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171. [12] 殷文斌, 王成波, 袁翠, 等. 一种飞机目标的遥感识别方法[J]. 测绘通报, 2017(3):34-37. DOI:10.13474/j.cnki.11-2246.2017.0079. YIN Wenbin, WANG Chengbo, YUAN Cui, et al. A method of aircraft recognition in remote sensing images[J]. Bulletin of Surveying and Mapping, 2017(3):34-37. DOI:10.13474/j.cnki.11-2246.2017.0079. [13] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916. [14] 杨争艳. 基于非下采样轮廓波SPP Net的高分辨SAR图像变化检测[D]. 西安:西安电子科技大学, 2018. YANG Zhengyan. Change detection for high-resolution SAR images based on NSCT SPP net[D]. Xi'an:Xidian University, 2018. [15] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015:1440-1448. [16] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [17] 史晋涛, 李喆, 顾超越, 等. 基于样本扩充的Faster R-CNN电网异物监测技术[J]. 电网技术, 2020, 44(1):44-51. SHI Jintao, LI Zhe, GU Chaoyue, et al. Research on foreign matter monitoring of power grid with Faster R-CNN based on sample expansion[J]. Power System Technology, 2020, 44(1):44-51. [18] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. [19] ROTHE R, GUILLAUMIN M, VAN GOOL L. Non-maximum suppression for object detection by passing messages between windows[C]//Proceedings of the 12th Asian Conference on Computer Vision. Singapore:Springer, 2015:290-306. [20] DAI Jifeng, QI Haozhi, XIONG Yuwen. Deformable convolutional networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy:IEEE, 2017:764-773. [21] HE Kaiming, ZHANG Xiangyu, REN Shaoping, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada:IEEE, 2016:770-778. [22] 邓志鹏, 孙浩, 雷琳, 等. 基于多尺度形变特征卷积网络的高分辨率遥感影像目标检测[J]. 测绘学报, 2018, 47(9):1216-1227. DOI:10.11947/j.AGCS.2018.20170595. DENG Zhipeng, SUN Hao, LEI Lin, et al. Object detection in remote sensing imagery with multi-scale deformable convolutional networks[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1216-1227. DOI:10.11947/j.AGCS.2018.20170595. [23] 左宗成, 张文, 张东映. 融合可变形卷积与条件随机场的遥感影像语义分割方法[J]. 测绘学报, 2019, 48(6):718-726. DOI:10.11947/j.AGCS.2019.20170740. ZUO Zongcheng, ZHANG Wen, ZHANG Dongying. A remote sensing image semantic segmentation method by combining deformable convolution with conditional random fields[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6):718-726. DOI:10.11947/j.AGCS.2019.20170740. [24] 李策, 张栋, 杜少毅, 等. 一种迁移学习和可变形卷积深度学习的蝴蝶检测算法[J]. 自动化学报, 2019, 45(9):1772-1782. LI Ce, ZHANG Dong, DU Shaoyi, et al. A butterfly detection algorithm based on transfer learning and deformable convolution deep learning[J]. Acta Automatica Sinica, 2019, 45(9):1772-1782. [25] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of the 13th European Conference on Computer Vision. Amsterdam, the Netherlands:Springer, 2016:21-37. |