测绘学报 ›› 2021, Vol. 50 ›› Issue (8): 1023-1032.doi: 10.11947/j.AGCS.2021.20210102

• 智能化测绘 • 上一篇    下一篇

人机协同的自然资源要素智能提取方法

张继贤1, 李海涛2, 顾海燕2, 张鹤1, 杨懿2, 谭相瑞2, 李淼1, 沈晶1   

  1. 1. 国家测绘产品质量检验测试中心, 北京 100830;
    2. 中国测绘科学研究院, 北京 100830
  • 收稿日期:2021-02-26 修回日期:2021-06-30 发布日期:2021-08-24
  • 通讯作者: 顾海燕 E-mail:guhy@casm.ac.cn
  • 作者简介:张继贤(1965-),男,博士,博士生导师,研究方向为遥感测图、监测理论与技术。
  • 基金资助:
    中国工程院战略研究与咨询项目(2021-XY-5);国家自然科学基金(41671440;41701506)

Study on man-machine collaborative intelligent extraction for natural resource features

ZHANG Jixian1, LI Haitao2, GU Haiyan2, ZHANG He1, YANG Yi2, TAN Xiangrui2, LI Miao1, SHEN Jing1   

  1. 1. National Quality Inspection and Testing Center for Surveying and Mapping Products State, Beijing 100830, China;
    2. Chinese Academy of Surveying and Mapping, Beijing 100830, China
  • Received:2021-02-26 Revised:2021-06-30 Published:2021-08-24
  • Supported by:
    The Strategic Research and Consulting Project of Chinese Academy of Engineering (No. 2021-XY-5);The National Natural Science Foundation of China (Nos. 41671440;41701506)

摘要: 开展自然资源统一调查监测评价,准确掌握我国各类自然资源家底和变化情况,是科学编制国土空间规划,逐步实现山水林田湖草的整体保护、系统修复和综合治理,保障国家生态安全的基础支撑。目前,基于遥感影像的自然资源要素提取,主要依赖人机交互的目视解译与外业逐图斑核查的方法,劳动强度大、生产效率低、人为因素多,已不能适应自然资源全要素、全流程、全覆盖一体化调查监测的新要求。本文顺应人工智能协作方法智能化发展新方向,总结分析了深度学习智能提取研究进展及存在问题,以及人机协同发展新方向研究现状,从分析自然资源要素的特点出发,提出了“智能计算后台+智能引擎+人机交互前台”人机协同智能提取技术框架,阐述了需要攻克的关键技术及解决途径,探讨了人机协同智能提取云平台构建思路,以期为自然要素智能提取提供新一代人工智能方法及思路,提升自然资源要素提取的自动化与智能化水平。

关键词: 自然资源调查监测, 自然资源要素, 人机协同, 人工智能, 智能提取

Abstract: Carrying out an integrated survey, monitoring and evaluation of natural resources, accurately understanding the status and changes of various natural resources in China, is the scientific basis for territorial and spatial plans, and gradually realizing the overall protection, restoration, and comprehensive management of landscapes (including mountains, forests, fields, lakes and grasses), ensuring national ecological security. At present, the extraction of natural resource features based on remote sensing images mainly relies on visual interpretation via man-machine interaction and field spot verification. It needs high labor intensity, and production efficiency is low. The results are also highly affected by man-induced factor, which can no longer adapt to the requirements for integrated investigation and monitoring of all features of natural resources. This paper conforms to the emerging direction of the research development with artificial intelligence collaboration. Firstly, this paper reviews the main research progress of deep learning technology and its application in the field of remote sensing image intelligent extraction systematically, and analyzes its limitations, then it reviews the main research status of man-machine collaboration. Afterward, Starting from the characteristics of natural resource features, presents a technical framework of "intelligent background computing+intelligent engine+man-machine interface" for man-machine collaborative intelligent extraction. The key technologies that need to be overcome are described. At last, the idea of creating cloud platform for feature extraction are discussed. This paper aims to provide a new AI method for intelligent extraction and improve the automation and intelligence level of natural resource feature extraction.

Key words: natural resources survey and monitoring, natural resources features, man-machine cooperation, artificial intelligence, intelligent extraction

中图分类号: