测绘学报 ›› 2021, Vol. 50 ›› Issue (8): 1013-1022.doi: 10.11947/j.AGCS.2021.20210085

• 智能化测绘 • 上一篇    下一篇

遥感影像智能解译样本库现状与研究

龚健雅, 许越, 胡翔云, 姜良存, 张觅   

  1. 武汉大学遥感信息工程学院, 湖北 武汉 430079
  • 收稿日期:2021-02-20 修回日期:2021-06-30 发布日期:2021-08-24
  • 通讯作者: 许越 E-mail:yuexu41@whu.edu.cn
  • 作者简介:龚健雅(1957-),男,博士,教授,中国科学院院士,长期从事地理信息理论和摄影测量与遥感基础研究。
  • 基金资助:
    国家重点研发计划(2016YFB0501403);国家自然科学基金重大研究计划(92038301)

Status analysis and research of sample database for intelligent interpretation of remote sensing image

GONG Jianya, XU Yue, HU Xiangyun, JIANG Liangcun, ZHANG Mi   

  1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
  • Received:2021-02-20 Revised:2021-06-30 Published:2021-08-24
  • Supported by:
    The National Key Research and Development Program of China (No. 2016YFB0501403);Major Program of the National Natural Science Foundation of China (No. 92038301)

摘要: 我国遥感对地观测等项目顺利实施,获取了大量时效性强、覆盖范围广、信息量丰富的遥感数据。但遥感影像智能化自动处理技术发展仍相对滞后,无法满足区域/全球大范围地物信息快速提取的需求。近年来,人们利用深度学习技术显著提高了影像特征提取成效,但由于所使用的深度学习样本数量和类型有限,对于多源遥感影像的自动解译能力仍然不足。本文面向大范围多源遥感影像地物信息智能解译需求,在分析现有样本集现状及问题的基础上,研究提出遥感影像智能解译样本库设计方案,并在此基础上设计了基于互联网的样本协同采集与共享服务框架。本文将为多源遥感影像样本库建设提供参考,为大范围遥感影像智能解译提供支持。

关键词: 遥感智能解译, 样本库, 多源遥感影像, 数据模型, 深度学习

Abstract: The rapid development of earth observation projects in China has obtained a large volume of multi-source (multi-type sensors, multi-temporal, multi-scale) remote sensing data. But the capability of intelligent remote sensing image processing lags behind data acquisition. In recent years, people have significantly improved the effectiveness of image feature extraction with deep learning networks. But limited number and variety of sample data is not enough for processing the multi-source remote sensing images. This paper analyzed existing sample datasets and proposed a method for constructing a sample database for intelligent remote sensing image interpretation, including the data model, classification system, data organization, as well as the Internet-based platform for collaborative sample collection and sharing.

Key words: remote sensing intelligent interpretation, sample database, multi-source remote sensing image, database model, deep learning

中图分类号: