[1] |
李涛, 唐新明, 李世金, 等. L波段差分干涉SAR卫星基础形变产品分类[J]. 测绘学报, 2023, 52(5):769-779. DOI:.
doi: 10.11947/j.AGCS.2023.20220050
|
|
LI Tao, TANG Xinming, LI Shijin, et al. Classification of basic deformation products of L-band differential interfero-metric SAR satellite[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5):769-779. DOI:.
doi: 10.11947/j.AGCS.2023.20220050
|
[2] |
HU Jun, ZHU Kang, FU Haiqiang, et al. Isolating orbital error from multitemporal InSAR derived tectonic deformation based on wavelet and independent component analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:4510705.
|
[3] |
SHIRZAEI M, WALTER T R. Estimating the effect of satellite orbital error using wavelet-based robust regression applied to InSAR deformation data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4600-4605.
|
[4] |
FATTAHI H, AMELUNG F. InSAR uncertainty due to orbital errors[J]. Geophysical Journal International, 2014, 199(1):549-560.
|
[5] |
ZHANG Lei, DING Xiaoli, LU Zhong, et al. A novel multitemporal InSAR model for joint estimation of deformation rates and orbital errors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3529-3540.
|
[6] |
WRIGHT T J, PARSONS B, ENGLAND P C, et al. InSAR observations of low slip rates on the major faults of western Tibet[J]. Science, 2004, 305(5681):236-239.
|
[7] |
DU Yanan, FU Haiqiang, LIU Lin, et al. Orbit error removal in InSAR/MTInSAR with a patch-based polynomial model[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102:102438.
|
[8] |
XU Bing, LI Zhiwei, WANG Qijie, et al. A refined strategy for removing composite errors of SAR interferogram[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):143-147.
|
[9] |
AMELUNG F, YUN S H, WALTER T R, et al. Stress control of deep rift intrusion at Mauna Loa volcano, Hawaii[J]. Science, 2007, 316(5827):1026-1030.
|
[10] |
TIAN Xin, MALHOTRA R, XU Bing, et al. Modeling orbital error in InSAR interferogram using frequency and spatial domain based methods[J]. Remote Sensing, 2018, 10(4):508.
|
[11] |
KOHLHASE A O, FEIGL K L, MASSONNET D. Applying differential InSAR to orbital dynamics: a new approach for estimating ERS trajectories[J]. Journal of Geodesy, 2003, 77(9):493-502.
|
[12] |
BÄHR H, HANSSEN R. Network adjustment of orbit errors in SAR interferometry[J]. Journal of Geodesy, 2012, 86:1147-1164.
|
[13] |
PEPE A, BERARDINO P, BONANO M, et al. SBAS-based satellite orbit correction for the generation of DInSAR time-series: application to RADARSAT-1 data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12):5150-5165.
|
[14] |
HANSSEN B R F. Radar interferometry: data interpretation and error analysis[M]. Dordrecht: Kluwer Academic, 2001.
|
[15] |
LU Zhong, DZURISIN D. InSAR imaging of aleutian volcanoes[M]//InSAR Imaging of Aleutian Volcanoes. Berlin, Heidelberg: Springer, 2014: 87-345.
|
[16] |
BÄHR H. Orbital effects in spaceborne synthetic aperture radar interferometry[D]. Karlsruhe: Karlsruhe Institute of Technology. 2013.
|
[17] |
SINGH K, STUSSI N, KEONG K L, et al. Baseline estimation in interferometric SAR[C]//Proceedings of 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Singapore: IEEE, 1997: 454-456.
|
[18] |
唐晓青, 向茂生, 吴一戎. 一种改进的基于干涉相位的基线估计方法[J]. 电子与信息学报, 2008, 30(12):2795-2799.
|
|
TANG Xiaoqing, XIANG Maosheng, WU Yirong. An improved baseline estimation approach based on the interferometric phases[J]. Journal of Electronics & Information Technology, 2008, 30(12):2795-2799.
|
[19] |
葛大庆, 戴可人, 郭兆成, 等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版), 2019, 44(7):949-956.
|
|
GE Daqing, DAI Keren, GUO Zhaocheng, et al. Early identification of serious geological hazards with integrated remote sensing technologies: thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):949-956.
|
[20] |
TADONO T, NAGAI H, ISHIDA H, et al. Generation of the 30 m-mesh global digital surface model by ALOS prism[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B4:157-162.
|
[21] |
SICA F, COZZOLINO D, ZHU Xiaoxiang, et al. InSAR-BM3D: a nonlocal filter for SAR interferometric phase restoration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6):3456-3467.
|
[22] |
PEPE A, LANARI R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9):2374-2383.
|
[23] |
张磊, 伍吉仓, 陈艳玲. InSAR高程模型及其精度分析[J]. 武汉大学学报(信息科学版), 2007, 32(2):108-111, 119.
|
|
ZHANG Lei, WU Jicang, CHEN Yanling. An elevation model of InSAR and its accuracy analysis[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2):108-111, 119.
|
[24] |
ZHANG Wenting, ZHU Wu, TIAN Xudong, et al. Improved DEM reconstruction method based on multibaseline InSAR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:4011505.
|
[25] |
ZHANG Lei, JIA Hongguo, LU Zhong, et al. Minimizing height effects in MTInSAR for deformation detection over built areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9167-9176.
|
[26] |
RODRÍGUEZ E, MORRIS C S, BELZ J E, et al. An assessment of the SRTM topographic products, Technical Report JPL D-31639[P]. Pasadena: JPL, 2005.
|
[27] |
MARESOVÁ J, GDULOVÁ K, PRACNÁ P, et al. Applicability of data acquisition characteristics to the identification of local artefacts in global digital elevation models: comparison of the Copernicus and TanDEM-X DEMs[J]. Remote Sensing, 2021, 13(19):3931.
|
[28] |
Copernicus DEM product handbook[EB/OL][2023-11-20]. http://spacedata.copernicus.eu/documents/20123/121239/GEO1988-CopernicusDEM-SPE-002_ProductHandbook_24.0.pdf.
|
[29] |
李鹏, 李振洪, 施闯, 等. 大地水准面高对InSAR大范围地壳形变监测的影响分析[J]. 地球物理学报, 2013, 56(6):1857-1867.
|
|
LI Peng, LI Zhenhong, SHI Chuang, et al. Impacts of geoid height on large-scale crustal deformation mapping with InSAR observations[J]. Chinese Journal of Geophysics, 2013, 56(6):1857-1867.
|