测绘学报 ›› 2025, Vol. 54 ›› Issue (11): 2009-2025.doi: 10.11947/j.AGCS.2025.20250199

• 摄影测量学与遥感 • 上一篇    

融合迁移特征空间和语义信息的遥感影像场景分类方法

龚希1,2(), 陈占龙3,4,5, 郑恒强1, 胡胜6(), 张洪艳3   

  1. 1.湖北第二师范学院计算机与人工智能学院,湖北 武汉 430205
    2.智能地学信息处理湖北省重点实验室(中国地质大学(武汉)),湖北 武汉 430078
    3.中国地质大学(武汉)计算机学院,湖北 武汉 430074
    4.中国地质大学(武汉)地质探测与评估教育部重点实验室,湖北 武汉 430074
    5.自然资源信息管理与数字孪生工程软件教育部工程研究中心,湖北 武汉 430074
    6.华南师范大学北斗研究院,广东 佛山 528225
  • 收稿日期:2025-05-09 修回日期:2025-09-27 发布日期:2025-12-15
  • 通讯作者: 胡胜 E-mail:gongxi@hue.edu.cn;husheng@m.scnu.edu.cn
  • 作者简介:龚希(1992—),女,博士,讲师,研究方向为遥感与空间数据分析。E-mail:gongxi@hue.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB3903605);国家自然科学基金(42301495);教育部人文社科基金青年项目(24YJC880047);智能地学信息处理湖北省重点实验室开放研究课题(KLIGIP-2022-A02)

Remote sensing image scene classification method integrating spatial and semantic information of transferred features

Xi GONG1,2(), Zhanlong CHEN3,4,5, Hengqiang ZHENG1, Sheng HU6(), Hongyan ZHANG3   

  1. 1.School of Computer and Artificial Intelligence, Hubei University of Education, Wuhan 430205, China
    2.Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China
    3.Department of Computer Science, China University of Geosciences, Wuhan 430074, China
    4.Key Laboratory of Geological Survey and Evaluation of Ministry of Education, China University of Geosciences, Wuhan 430074, China
    5.Engineering Research Center of Natural Resource Information Management and Digital Twin Engineering Software, Ministry of Education, Wuhan 430074, China
    6.Beidou Research Institute, South China Normal University, Foshan 528225, China
  • Received:2025-05-09 Revised:2025-09-27 Published:2025-12-15
  • Contact: Sheng HU E-mail:gongxi@hue.edu.cn;husheng@m.scnu.edu.cn
  • About author:GONG Xi (1992—), female, PhD, lecturer, majors in remote sensing and spatial data analysis. E-mail: gongxi@hue.edu.cn
  • Supported by:
    The National Key Research and Development Program of China(2022YFB3903605);The National Natural Science Foundation of China(42301495);MOE (Ministry of Education in China) Project of Humanities and Social Sciences(24YJC880047);Open Research Project of The Hubei Key Laboratory of Intelligent Geo-Information Processing(KLIGIP-2022-A02)

摘要:

针对遥感影像场景中复杂地物空间分布引起的场景混淆、分类准确率低下的问题,本文提出一种融合场景迁移特征空间和语义信息的分类方法。利用深度卷积神经网络不同层次迁移特征对场景局部细节信息和全局语义信息表达的特点,建立深度空间共现矩阵量化局部地物空间共现规律,获得场景的空间信息特征并与高层次语义特征融合,形成空间-语义联合特征,实现对场景空间与语义信息的协同表达,从而提升对复杂遥感影像场景的识别能力。在多个遥感影像场景数据集上的试验表明,本文方法可有效识别复杂易混淆场景,在空间信息表达和提升分类准确率方面具有一定优势。

关键词: 遥感影像, 场景分类, 迁移特征, 深度空间共现矩阵, 空间-语义信息融合

Abstract:

To address scene confusion and low classification accuracy caused by complex spatial distributions of ground objects in remote sensing (RS) scenes, a novel classification method integrating spatial and semantic information from transferred features of RS scenes is proposed. Leveraging the representation capabilities of different-level transferred features from a deep convolutional neural network for local detail and global semantic information, a deep spatial co-occurrence matrix is constructed to quantify the spatial co-occurrence patterns of local features, which are then fused with high-level semantic features. The resulting spatial-semantic joint feature synergistically represents scene spatial and semantic information, thereby enhancing recognition capability for complex RS scenes. Experiments on several RS scene classification datasets demonstrate the proposed method effectively discriminates complex and confusing scenes, showing advantages in spatial information representation and classification performance improvement.

Key words: remote sensing image, scene classification, transferred features, deep spatial co-occurrence matrix, spatial-semantic information fusion

中图分类号: