测绘学报 ›› 2021, Vol. 50 ›› Issue (3): 396-404.doi: 10.11947/j.AGCS.2021.20200038

• 摄影测量学与遥感 • 上一篇    下一篇

大范围地表沉降时序深度学习预测法

刘青豪1,2, 张永红2, 邓敏1, 吴宏安2, 康永辉2, 魏钜杰2   

  1. 1. 中南大学地球科学与信息物理学院, 湖南 长沙 410083;
    2. 中国测绘科学研究院, 北京 100830
  • 收稿日期:2020-02-05 修回日期:2020-08-01 发布日期:2021-03-31
  • 通讯作者: 张永红 E-mail:yhzhang@casm.ac.cn
  • 作者简介:刘青豪(1996-),男,硕士,研究方向为时空数据挖掘,InSAR形变预测。E-mail:185012100@csu.edu.cn
  • 基金资助:
    国家自然科学基金(41874014;41730105);政府间国际科技创新合作重点专项(2017YFE0107100);中国测绘科学研究院基本科研业务费(AR1938)

Time series prediction method of large-scale surface subsidence based on deep learning

LIU Qinghao1,2, ZHANG Yonghong2, DENG Min1, WU Hongan2, KANG Yonghui2, WEI Jujie2   

  1. 1. College of Earth Science and Information Physics, Central South University, Changsha 410083, China;
    2. China Academy of Surveying and Mapping, Beijing 100830, China
  • Received:2020-02-05 Revised:2020-08-01 Published:2021-03-31
  • Supported by:
    The National Natural Science Foundation of China (Nos. 41874014;41730105);The Key Project of International Science and Technology Innovation Cooperation between Governments (No. 2017YFE0107100);The Basic Scientific Research Business Cost Project of China Academy of Surveying and Mapping Sciences (No. AR1938)

摘要: 地表沉降不仅影响社会经济的可持续发展,还威胁人类的生命安全。高精度的地表沉降预测对人类预防地质灾害具有重要意义。现有的预测方法因模型参数难以获取或相关数据的缺乏而难以得到可靠的预测结果,针对此问题,本文提出一种基于深度学习的地表沉降预测方法。首先采用多主影像相干目标小基线干涉技术MCTSB-InSAR获取大区域高精度地表形变时序反演结果;其次利用循环神经网络作为网络架构,用长短期记忆(LSTM)模型进行地表沉降特征学习;最后采用网格搜索的方法调整模型参数,进而获取最优的模型参数组合方案。实际观测结果显示,相较于现有地表沉降预测方法,本文提出的预测模型平均绝对误差(0.3 mm)至少降低了27.3%,差分沉降量平均预测精度至少提高了8.9%。空间格局分析的结果表明,LSTM模型对于大区域时序形变的短期预测是有效的。

关键词: 地表沉降, 时间序列预测, 深度学习, 长短期记忆, InSAR

Abstract: Surface subsidence not only affects the sustainable development of social economy, but also threatens the safety of human life. High precision prediction of surface subsidence is of great significance for the prevention of geological disasters. However, the existing prediction methods are difficult to obtain reliable prediction results because of the model parameters or the lack of relevant data. For this problem, a method of surface subsidence prediction based on deep learning is proposed. Firstly, the multiple master-image coherent target small-baseline InSAR (MCTSB-InSAR) is used to obtain the inversion results of large area and high precision ground deformation time series. Secondly, the cyclic neural network is used as the network framework, and the long short-term memory (LSTM) model is used to learn the characteristics of ground settlement. Finally, the grid search method is used to adjust the model parameters, then get the optimal combination scheme of model parameters. The actual observation results show that the average absolute error (0.3 mm) of the prediction model proposed in this paper is reduced by 27.3% at least, and the average prediction accuracy of differential settlement is improved by 8.9% at least. The results of spatial pattern analysis show that the LSTM model is effective for the short-term prediction of large-scale time series deformation.

Key words: ground settlement, time series prediction, deep learning, LSTM, InSAR

中图分类号: