[1] |
OLTMANS S J, HOFMANN D J. Increase in lower-stratospheric water vapour at a mid-latitude northern hemisphere site from 1981 to 1994[J]. Nature, 1995, 374: 146-149.
|
[2] |
JOHNSTON B R, RANDEL W J, SJOBERG J P. Evaluation of tropospheric moisture characteristics among COSMIC-2, ERA5 and MERRA-2 in the tropics and subtropics[J]. Remote Sensing, 2021, 13(5): 880.
|
[3] |
LI Xueying, LONG Di. An improvement in accuracy and spatiotemporal continuity of the MODIS precipitable water vapor product based on a data fusion approach[J]. Remote Sensing of Environment, 2020, 248: 111966.
|
[4] |
YUAN Peng, BLEWITT G, KREEMER C, et al. An enhanced integrated water vapour dataset from more than 10 000 global ground-based GPS stations in2020[J]. Earth System Science Data, 2023, 15(2): 723-743.
|
[5] |
TRENBERTH K E, DAI Aiguo, RASMUSSEN R M, et al. The changing character of precipitation[J]. Bulletin of the American Meteorological Society, 2003, 84(9): 1205-1218.
|
[6] |
NING T, WICKERT J, DENG Z, et al. Homogenized time series of the atmospheric water vapor content obtained from the GNSS reprocessed data[J]. Journal of Climate, 2016, 29(7): 2443-2456.
|
[7] |
WANG Junhong, DAI Aiguo, MEARS C. Global water vapor trend from 1988 to 2011 and its diurnal asymmetry based on GPS, radiosonde, and microwave satellite measurements[J]. Journal of Climate, 2016, 29(14): 5205-5222.
|
[8] |
MO Zhixiang, ZENG Zhaoliang, HUANG Liangke, et al. Investigation of antarctic precipitable water vapor variability and trend from 18 year (2001 to 2018) data of four reanalyses based on radiosonde and GNSS observations[J]. Remote Sensing, 2021, 13(19): 3901.
|
[9] |
WANG Shuaimin, XU Tianhe, XU Yujing, et al. Intercomparison of total precipitable water derived from COSMIC-2 and three different microwave radiometers over the ocean[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-10.
|
[10] |
KING M D, KAUFMAN Y J, MENZEL W P, et al. Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS)[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(1): 2-27.
|
[11] |
VEY S, DIETRICH R, RÜLKE A, et al. Validation of precipitable water vapor within the NCEP/DOE reanalysis using global GPS observations from one decade[J]. Journal of Climate, 2010, 23(7): 1675-1695.
|
[12] |
SCHRÖDER M, LOCKHOFF M, FELL F, et al. The GEWEX water vapor assessment archive of water vapour products from satellite observations and reanalyses[J]. Earth System Science Data, 2018, 10(2): 1093-1117.
|
[13] |
YAO Y, SUN Z, XU C. Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-earth atmospheric temperature[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 1-11.
|
[14] |
ZHANG Weixing, LOU Yidong, CAO Yunchang, et al. Corrections of radiosonde-based precipitable water using ground-based GPS and applications on historical radiosonde data over China[J]. Journal of Geophysical Research (Atmospheres), 2019, 124(6): 3208-3222.
|
[15] |
WANG Yizhu, LIU Hailei, ZHANG Yong, et al. Validation of FY-4A AGRI layer precipitable water products using radiosonde data[J]. Atmospheric Research, 2021, 253: 105502.
|
[16] |
WANG Junhong, ZHANG Liangying. Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements[J]. Journal of Climate, 2008, 21(10): 2218-2238.
|
[17] |
姚宜斌, 赵庆志. GNSS对流层水汽监测研究进展与展望[J]. 测绘学报, 2022, 51(6): 935-952.DOI: 10.11947/j.AGCS.2022.20220039.
|
|
YAO Yibin, ZHAO Qingzhi. Research progress and prospect of monitoring tropospheric water vapor by GNSS technique[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 935-952.DOI: 10.11947/j.AGCS.2022.20220039.
|
[18] |
WANG Shuaimin, XU Tianhe, NIE Wenfeng, et al. Evaluation of precipitable water vapor from five reanalysis products with ground-based GNSS observations[J]. Remote Sensing, 2020, 12(11): 1817.
|
[19] |
张克非, 李浩博, 王晓明, 等. 地基GNSS大气水汽探测遥感研究进展和展望[J]. 测绘学报, 2022, 51(7): 1172-1191.DOI: 10.11947/j.AGCS.2022.20220149.
|
|
ZHANG Kefei, LI Haobo, WANG Xiaoming, et al. Recent progresses and future prospectives of ground-based GNSS water vapor sounding[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1172-1191.DOI: 10.11947/j.AGCS.2022.20220149.
|
[20] |
赵庆志, 杜正, 吴满意, 等. 利用多源数据构建PWV混合模型[J]. 武汉大学学报(信息科学版), 2022, 47(11): 1823-1831, 1846.
|
|
ZHAO Qingzhi, DU Zheng, WU Manyi, et al. Establishment of PWV fusion model using multi-source data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1823-1831, 1846.
|
[21] |
WEE T K, ANTHES R A, HUNT D C, et al. Atmospheric GNSS RO 1D-var in use at UCAR: description and validation[J]. Remote Sensing, 2022, 14(21): 5614.
|
[22] |
HO S, ZHOU X, SHAO X, et al. Initial assessment of the COSMIC-2/FORMOSAT-7 neutral atmosphere data quality in NESDIS/STAR using in situ and satellite data[J]. Remote Sensing, 2020, 12: 4099.
|
[23] |
LECKNER B. The spectral distribution of solar radiation at the earth's surface: elements of a model[J]. Solar Energy, 1978, 20: 143-150.
|
[24] |
黄良珂, 莫智翔, 刘立龙, 等. 顾及时变递减因子的中国大陆地区大气可降水量垂直改正模型[J]. 测绘学报, 2021, 50(10): 1320-1330.DOI: 10.11947/j.AGCS.2021.20200530.
|
|
HUANG Liangke, MO Zhixiang, LIU Lilong, et al. An empirical model for the vertical correction of precipitable water vapor considering the time-varying lapse rate for China's mainland[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1320-1330.DOI: 10.11947/j.AGCS.2021.20200530.
|
[25] |
KOUBA J. Implementation and testing of the gridded Vienna mapping function 1 (VMF1)[J]. Journal of Geodesy, 2008, 82(4): 193-205.
|
[26] |
EMARDSON T R, JOHANSSON J M. Spatial interpolation of the atmospheric water vapor content between sites in a ground-based GPS Network[J]. Geophysical Research Letters, 1998, 25(17): 3347-3350.
|
[27] |
HUANG Liangke, MO Zhixiang, LIU Lilong, et al. Evaluation of hourly PWV products derived from ERA5 and MERRA-2 over the Tibetan Plateau using ground-based GNSS observations by two enhanced models[J]. Earth and Space Science, 2021, 8(5): EA001516.
|
[28] |
HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049.
|
[29] |
HUANG Liangke, LIU Wen, MO Zhixiang, et al. A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate[J]. GPS Solutions, 2023, 27(4): 170.
|