测绘学报 ›› 2025, Vol. 54 ›› Issue (8): 1476-1488.doi: 10.11947/j.AGCS.2025.20240457

• 摄影测量学与遥感 • 上一篇    下一篇

自适应参考特征引入与多尺度特征聚合的时空融合算法

方帅1,2(), 刘加恩1, 张晶1   

  1. 1.合肥工业大学计算机与信息学院,安徽 合肥 230000
    2.工业安全与应急技术安徽省重点实验室,安徽 合肥 230000
  • 收稿日期:2024-11-11 修回日期:2025-06-19 出版日期:2025-09-16 发布日期:2025-09-16
  • 作者简介:方帅(1978—),女,博士,教授,研究方向为图像复原和视觉检测。E-mail:fangshuai@hfut.edu.cn
  • 基金资助:
    国家自然科学基金(61175033)

Spatio-temporal fusion algorithm based on adaptive reference feature incorporation and multi-scale feature aggregation

Shuai FANG1,2(), Jiaen LIU1, Jing ZHANG1   

  1. 1.School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230000, China
    2.Anhui Province Key Laboratory of Industry Safety and Emergency Technology, Hefei 230000, China
  • Received:2024-11-11 Revised:2025-06-19 Online:2025-09-16 Published:2025-09-16
  • About author:FANG Shuai (1978—), female, PhD, professor, majors in image restoration and visual inspection. E-mail: fangshuai@hfut.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(61175033)

摘要:

时空融合算法旨在生成具有高空间分辨率的稠密时间序列图像,对监测地表精细动态变化具有重要意义。然而,现有时空融合算法在土地覆盖变化区域易受参考图像的误导,同时由小目标构成的异质区域的重建较为困难。为此,本文提出了一种自适应参考特征引入与多尺度特征聚合的时空融合算法。在编码阶段,设计了自适应参考特征引入模块,根据时序粗图像对提供的变化信息及门控结构,实现对参考细图像的自适应引入,既利用参考信息提高预测精度,又抑制参考信息对变化区域的误导;在解码器阶段,设计了多尺度特征聚合策略,为解码器每一层聚合不同尺度的信息,并结合通道注意力机制筛选重要特征信息,提高了异质区域的重建精度;最后,在损失函数中引入焦频损失项,从频域分布的角度,增强生成图像的真实性和关注困难频段的重建,弥补了空谱损失的不足。在LGC、CIA和Wuhan数据集上的试验结果表明,与其他6种算法相比,本文算法具有更好的融合结果。

关键词: 时空融合, 深度学习, 自适应参考特征引入, 多尺度特征聚合, 焦频损失

Abstract:

The purpose of spatio-temporal fusion algorithm is to generate dense time series images with high spatial resolution, which is very important for monitoring fine dynamic-changes of the surface. Most of the spatio-temporal fusion algorithms help to predict the target fine image by reference fine image in the adjacent time, which makes the purpose of spatio-temporal fusion algorithm is to generate dense time series images with high spatial resolution, which is very important for monitoring fine dynamic-changes of the surface. However, the existing spatio-temporal fusion algorithms are easily misled by the reference image in the area with land cover change, and the reconstruction of heterogeneous areas composed of small targets is more difficult. To this end, this paper proposes a spatio-temporal fusion algorithm based on adaptive reference feature incorporation and multi-scale feature aggregation. In the encoding stage, an adaptive reference feature incorporation module is designed. According to the change information provided by the time series coarse image pair and the gating structure, the adaptive introduction of the reference fine image is realized, which not only improves the prediction accuracy by using the reference information, but also suppresses the misleading of the reference information to the change area. In the decoder stage, a multi-scale feature aggregation strategy is designed to aggregate information of different scales for each layer of the decoder, and the channel attention mechanism is combined to filter information with important features to improve the reconstruction accuracy of heterogeneous areas. Finally, the focal frequency loss term is introduced into the loss function. From the perspective of frequency distribution, it enhances the authenticity of the generated image and focuses on the reconstruction of difficult frequency bands to make up for the deficiency of spatial spectrum loss. The experimental results on LGC, CIA and Wuhan datasets show that the proposed algorithm has better fusion results than the other six algorithms.

Key words: spatio-temporal fusion, deep learning, adaptive reference feature incorporation, multi-scale feature aggregation, focal frequency loss

中图分类号: