| [1] |
汤国安, 李发源, 刘学军. 数字高程模型教程[M]. 3版. 北京: 科学出版社, 2016.
|
|
TANG Guoan, LI Fayuan, LIU Xuejun. Digital elevation model course[M]. 3rd ed. Beijing: Science Press, 2016.
|
| [2] |
王光霞, 朱长青, 史文中, 等. 数字高程模型地形描述精度的研究[J]. 测绘学报, 2004, 33(2): 168-173.
|
|
WANG Guangxia, ZHU Changqing, SHI Wenzhong, et al. The further study on the accuracy of DEM terrain representation[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(2): 168-173.
|
| [3] |
汤国安, 那嘉明, 程维明. 我国区域地貌数字地形分析研究进展[J]. 测绘学报, 2017, 46(10): 1570-1591. DOI: .
doi: 10.11947/j.AGCS.2017.20170388
|
|
TANG Guoan, NA Jiaming, CHENG Weiming. Progress of digital terrain analysis on regional geomorphology in China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1570-1591. DOI: .
doi: 10.11947/j.AGCS.2017.20170388
|
| [4] |
YANG Jiaqi, XU Jun, ZHU Yunqiang, et al. GeomorPM: a geomorphic pretrained model integrating convolution and Transformer architectures based on DEM data[J]. International Journal of Geographical Information Science, 2025, 39(2): 422-451.
|
| [5] |
AVAND M, KURIQI A, KHAZAEI M, et al. DEM resolution effects on machine learning performance for flood probability mapping[J]. Journal of Hydro-Environment Research, 2022, 40: 1-16.
|
| [6] |
赵建虎, 欧阳永忠, 王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报, 2017, 46(10): 1786-1794. DOI: .
doi: 10.11947/j.AGCS.2017.20170276
|
|
ZHAO Jianhu, OUYANG Yongzhong, WANG Aixue. Status and development tendency for seafloor terrain measurement technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1786-1794. DOI: .
doi: 10.11947/j.AGCS.2017.20170276
|
| [7] |
李鹏. 海岸带地理环境雷达遥感监测关键问题研究[J]. 测绘学报, 2021, 50(4): 565. DOI: .
doi: 10.11947/j.AGCS.2021.20200165
|
|
LI Peng. Key issues on coastal geographical environment monitoring with radar remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 565. DOI: .
doi: 10.11947/j.AGCS.2021.20200165
|
| [8] |
KARIMINEJAD N, HOSSEINALIZADEH M, POURGHASEMI H R, et al. Optimizing collapsed pipes mapping: effects of DEM spatial resolution[J]. Catena, 2020, 187: 104344.
|
| [9] |
王耀革, 王鑫, 朱长青. 基于双线性内插规则格网DEM地形误差模型[J]. 测绘科学技术学报, 2007, 24(6): 419-421.
|
|
WANG Yaoge, WANG Xin, ZHU Changqing. A terrain error model of grid DEM based on bilinear polynomial[J]. Journal of Zhengzhou Institute of Surveying and Mapping, 2007, 24(6): 419-421.
|
| [10] |
KEYS R G. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1981, 29: 1153-1160.
|
| [11] |
郭伟伟, 章品正. 基于迭代反投影的超分辨率图像重建[J]. 计算机科学与探索, 2009, 3(3): 321-329.
|
|
GUO Weiwei, ZHANG Pinzheng. Super-resolution image reconstruction with iterative back projection algorithm[J]. Journal of Frontiers of Computer Science & Technology, 2009, 3(3): 321-329.
|
| [12] |
PROTTER M, ELAD M, TAKEDA H, et al. Generalizing the nonlocal-means to super-resolution reconstruction[J]. IEEE Transactions on Image Processing, 2009, 18(1): 36-51.
|
| [13] |
DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.
|
| [14] |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 136-144.
|
| [15] |
LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 105-114.
|
| [16] |
WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]//Proceedings of 2018 European Conference on Computer Vision. Cham: Springer, 2019: 63-79.
|
| [17] |
ZHANG Yifan, YU Wenhao, ZHU Di. Terrain feature-aware deep learning network for digital elevation model superresolution[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 189: 143-162.
|
| [18] |
DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 764-773.
|
| [19] |
侯旭娟, 邓筱曈, 花卫华, 等. 基于自适应生成对抗网络的DEM超分辨率重建方法[J/OL]. 武汉大学学报(信息科学版). [2025-02-20]. https://doi.org/10.13203/j.whugis20240186.
|
|
HOU Xujuan, DENG Xiaotong, HUA Weihua, et al. DEM super-resolution reconstruction method based on adaptive generative adversarial network[J/OL]. Geomatics and Information Science of Wuhan University. [2025-02-20]. https://doi.org/10.13203/j.whugis20240186.
|
| [20] |
陈凯, 雷少华, 代文, 等. 基于开源数据和条件生成对抗网络的地形重建方法[J]. 地球信息科学学报, 2023, 25(2): 252-264.
|
|
CHEN Kai, LEI Shaohua, DAI Wen, et al. Terrain rebuilding method based on open source data and conditional generative adversarial networks[J]. Journal of Geo-information Science, 2023, 25(2): 252-264.
|
| [21] |
CAI Wuxu, LIU Yanxiong, CHEN Yilan, et al. A seabed terrain feature extraction transformer for the super-resolution of the digital bathymetric model[J]. Remote Sensing, 2023, 15(20): 4906.
|
| [22] |
WANG Yi, JIN Shichao, YANG Zekun, et al. TTSR: a Transformer-based topography neural network for digital elevation model super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 3360489.
|
| [23] |
TOZER B, SANDWELL D T, SMITH W H F, et al. Global bathymetry and topography at 15 arcsec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847-1864.
|
| [24] |
AMANTE C, EAKINS B W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis[R]. Boulder: National Geophysical Data Center, 2009.
|
| [25] |
HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. [2025-02-20]. https://arxiv.org/abs/1606.08415.
|
| [26] |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of 2015 International Conference on Machine Learning. Lille: PMLR, 2015: 448-456.
|
| [27] |
ULYANOV D, VEDALDI A, LEMPITSKY V. Improved texture networks: maximizing quality and diversity in feed-forward stylization and texture synthesis[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4105-4113.
|
| [28] |
SALIMANS T, KINGMA D P. Weight normalization: a simple reparameterization to accelerate training of deep neural networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 901-909.
|
| [29] |
CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7482-7491.
|
| [30] |
LIANG Jingyun, CAO Jiezhang, SUN Guolei, et al. SwinIR: image restoration using swin transformer[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision Workshops. Montreal: IEEE, 2021: 1833-1844.
|
| [31] |
ZHOU Yupeng, LI Zhen, GUO Chunle, et al. SRFormer: permuted self-attention for single image super-resolution[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 12734-12745.
|
| [32] |
LIU Hongying, LI Zekun, SHANG Fanhua, et al. Arbitrary-scale super-resolutionvia deep learning: a comprehensive survey[J]. Information Fusion, 2024, 102: 102015.
|
| [33] |
孙群, 温伯威, 陈欣. 多源地理空间数据一致性处理研究进展[J]. 测绘学报, 2022, 51(7): 1561-1574. DOI: .
doi: 10.11947/j.AGCS.2022.20220151
|
|
SUN Qun, WEN Bowei, CHEN Xin. Research on consistency processing of multi-source geospatial data[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1561-1574. DOI: .
doi: 10.11947/j.AGCS.2022.20220151
|
| [34] |
孙群, 任福, 龙毅, 等. 中国地图制图学与地理信息工程进展报告(2019—2023)[J]. 测绘学报, 2024, 53(3): 399-412. DOI: .
doi: 10.11947/j.AGCS.2024.20230562
|
|
SUN Qun, REN Fu, LONG Yi, et al. The progress and trend of cartography and geographic information engineering in China (2019—2023)[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 399-412. DOI: .
doi: 10.11947/j.AGCS.2024.20230562
|