测绘学报 ›› 2025, Vol. 54 ›› Issue (8): 1518-1531.doi: 10.11947/j.AGCS.2025.20250126

• 地图学与地理信息 • 上一篇    

融合频域特征与地形先验的全球沿海DEM超分辨率重建方法

黄文君1(), 孙群1(), 徐青1, 范龙2, 余岸竹1,3,4, 张付兵1,5   

  1. 1.信息工程大学地理空间信息学院,河南 郑州 450052
    2.海军研究院,天津 300061
    3.智慧中原地理信息技术河南省协同创新中心,河南 郑州 450052
    4.时空感知与智能处理自然资源部重点实验室,河南 郑州 450052
    5.陆军工程大学爆炸冲击防灾减灾全国重点实验室,江苏 南京 210007
  • 收稿日期:2025-03-21 修回日期:2025-05-22 发布日期:2025-09-16
  • 通讯作者: 孙群 E-mail:13273718438@163.com;13503712102@163.com
  • 作者简介:黄文君(2001—),女,博士生,研究方向为地形超分辨率重建与分析。E-mail:13273718438@163.com
  • 基金资助:
    国家自然科学基金(42101454);智慧地球重点实验室基金(KF2023YB02-02)

A global coastal DEM super-resolution reconstruction method integrating frequency-domain features and topographic priors

Wenjun HUANG1(), Qun SUN1(), Qing XU1, Long FAN2, Anzhu YU1,3,4, Fubing ZHANG1,5   

  1. 1.Institute of Geospatial Information, University of Information Engineering, Zhengzhou 450052, China
    2.Naval Research Institute, Tianjin 300061, China
    3.Collaborative Innovation Center of Geo-information Technology for Smart Central Plains, Zhengzhou 450052, China
    4.Key Laboratory of Spatiotemporal Perception and Intelligent processing, Ministry of Natural Resources, Zhengzhou 450052, China
    5.State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact, Army Engineering University, Nanjing 210007, China
  • Received:2025-03-21 Revised:2025-05-22 Published:2025-09-16
  • Contact: Qun SUN E-mail:13273718438@163.com;13503712102@163.com
  • About author:HUANG Wenjun (2001—), female, PhD candidate, majors in DEM super-resolution reconstruction and analysis. E-mail: 13273718438@163.com
  • Supported by:
    The National Natural Science Foundation of China(42101454);Foundation of Key Laboratory of Smart Earth of China(KF2023YB02-02)

摘要:

针对现有数字高程模型(DEM)超分辨率重建方法在模型泛化性能和地形特征感知能力方面的不足,本文提出了一种基于地形因子引导的DEM超分辨率重建方法。首先,基于开源DEM数据GEBCO和ETOPO-1,构建了覆盖全球沿海地区的高低分辨率DEM配对数据集。然后,设计了一种端到端的DEM超分辨率重建模型,该模型通过高低频特征解耦模块有效分离并融合地形高频细节与低频整体特征;引入地形因子引导模块,结合地表切割深度等地形先验知识,显著增强了模型对地形结构的感知能力;并基于同方差不确定性实现动态权重调整,根据不同地形特征的重要性自适应调整损失函数中各项权重,从而提升重建精度和稳定性。与7种代表性超分辨率重建方法的试验对比结果表明,本文方法在RMSEelevation、MAEelevation和RMSEslope指标上均表现出最优性能,能够有效重建细碎山脊、低矮海山等复杂地形细节,验证了本文方法在地形特征重建与精度提升方面的有效性与优越性。

关键词: 数字高程模型, 超分辨率重建, 地形因子, 先验引导, 特征融合

Abstract:

To overcome the limitations of existing digital elevation model (DEM) super-resolution reconstruction methods in model generalization and terrain feature awareness, a terrain-factor-guided approach is proposed. First, a paired high- and low-resolution DEM dataset covering global coastal regions is constructed based on the open-source DEM data from GEBCO and ETOPO-1. Then, an end-to-end DEM super-resolution model is designed with a high-low frequency feature decoupling module to separate and fuse terrain details and global features. A terrain guidance module is introduced, incorporating prior terrain knowledge, such as surface segmentation depth, to enhance the perception of terrain structure. Additionally, dynamic weight adjustment based on homoscedastic uncertainty is employed to adaptively assign loss weights according to the importance of different terrain features, thereby improving reconstruction accuracy and stability. Comparative experiments with seven state-of-the-art methods demonstrate that the proposed approach achieves superior performance in RMSEelevation, MAEelevation, and RMSEslope metrics, accurately reconstructing complex features such as fragmented ridges and low seamounts. These results validate the effectiveness and robustness of the method in terrain feature reconstruction and precision enhancement.

Key words: digital elevation model, super-resolution reconstruction, terrain factors, prior-guided, feature fusion

中图分类号: