[1] |
李德仁, 王密, 沈欣, 等. 从对地观测卫星到对地观测脑[J]. 武汉大学学报(信息科学版), 2017, 42(2):143-149. LI Deren, WANG Mi, SHEN Xin, et al. From earth observation satellite to earth observation brain[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2):143-149.
|
[2] |
董志鹏, 王密, 李德仁. 一种融合超像素与最小生成树的高分辨率遥感影像分割方法[J]. 测绘学报, 2017, 46(6):734-742. DOI:10.11947/j.AGCS.2017.20160514. DONG Zhipeng, WANG Mi, LI Deren. A high resolution remote sensing image segmentation method by combining superpixels with minimum spanning tree[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6):734-742. DOI:10.11947/j.AGCS.2017.20160514.
|
[3] |
刘婧, 李培军. 结合结构和光谱特征的高分辨率影像分割方法[J]. 测绘学报, 2014, 43(5):466-473. DOI:10.13485/j.cnki.11-2089.2014.0087. LIU Jing, LI Peijun. A high resolution image segmentation method by combined structural and spectral characteristics[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(5):466-473. DOI:10.13485/j.cnki.11-2089.2014.0087.
|
[4] |
高常鑫, 桑农. 基于深度学习的高分辨率遥感影像目标检测[J]. 测绘通报, 2014(S1):108-111. DOI:10.13474/j.cnki.11-2246.2014.0625. GAO Changxin, SANG Nong. Deep learning for object detection in remote sensing image[J]. Bulletin of Surveying and Mapping, 2014(S1):108-111. DOI:10.13474/j.cnki.11-2246.2014.0625.
|
[5] |
CHENG Gong, HAN Junwei, GUO Lei, et al. Object detection in remote sensing imagery using a discriminatively trained mixture model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85(11):32-43.
|
[6] |
张剑清, 佘琼, 潘励. 基于LBP/C纹理的遥感影像居民地变化检测[J]. 武汉大学学报(信息科学版), 2008, 33(1):7-11. ZHANG Jianqing, SHE Qiong, PAN Li. Change detection of residential area by remote sensing image based on LBP/C texture[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1):7-11.
|
[7] |
MORANDUZZO T, MELGANI F, DAAMOUCHE A. An object detection technique for very high resolution remote sensing images[C]//Proceedings of the 8th IEEE International Workshop on Systems, Signal Processing and Their Applications. Algiers, Algeria:IEEE, 2013:79-83.
|
[8] |
BRENNING A, LONG Shilei, FIEGUTH P. Detecting rock glacier flow structures using Gabor filters and IKONOS imagery[J]. Remote Sensing of Environment, 2012, 125(10):227-237.
|
[9] |
DOU Peng, CHEN Yangbo, YUE Haiyun. Remote-sensing imagery classification using multiple classification algorithm-based AdaBoost[J]. International Journal of Remote Sensing, 2018, 39(3):619-639.
|
[10] |
YANG Guang, FANG Shenghui. Improving remote sensing image classification by exploiting adaptive features and hierarchical hybrid decision trees[J]. Remote Sensing Letters, 2017, 8(2):156-164.
|
[11] |
曲景影, 孙显, 高鑫. 基于CNN模型的高分辨率遥感图像目标识别[J]. 国外电子测量技术, 2016, 35(8):45-50. QU Jingying, SUN Xian, GAO Xin. Remote sensing image target recognition based on CNN[J]. Foreign Electronic Measurement Technology, 2016, 35(8):45-50.
|
[12] |
卢艺帆, 张松海. 基于卷积神经网络的光学遥感图像目标检测[J]. 中国科技论文, 2017, 12(14):1583-1589, 1633. LU Yifan, ZHANG Songhai. Object detection in optical remote sensing images with convolutional neural networks[J]. China Sciencepaper, 2017, 12(14):1583-1589, 1633.
|
[13] |
何海威, 钱海忠, 谢丽敏, 等. 立交桥识别的CNN卷积神经网络法[J]. 测绘学报, 2018, 47(3):385-395. DOI:10.11947/j.AGCS.2018.20170265. HE Haiwei, QIAN Haizhong, XIE Limin, et al. Interchange recognition method based on CNN[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3):385-395. DOI:10.11947/j.AGCS.2018.20170265.
|
[14] |
郑卓, 方芳, 刘袁缘, 等. 高分辨率遥感影像场景的多尺度神经网络分类法[J]. 测绘学报, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191. ZHENG Zhuo, FANG Fang, LIU Yuanyuan, et al. Joint multi-scale convolution neural network for scene classification of high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191.
|
[15] |
伍广明, 陈奇, SHIBASAKI R, 等. 基于U型卷积神经网络的航空影像建筑物检测[J]. 测绘学报, 2018, 47(6):864-872. DOI:10.11947/j.AGCS.2018.20170651. WU Guangming, CHEN Qi, SHIBASAKI R, et al. High precision building detection from aerial imagery using a U-Net like convolutional architecture[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):864-872. DOI:10.11947/j.AGCS.2018.20170651.
|
[16] |
戴玉超, 张静, PORIKLI F, 等. 深度残差网络的多光谱遥感图像显著目标检测[J]. 测绘学报, 2018, 47(6):873-881. DOI:10.11947/j.AGCS.2018.20170633. DAI Yuchao, ZHANG Jing, PORIKLI F, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):873-881. DOI:10.11947/j.AGCS.2018.20170633.
|
[17] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1):142-158.
|
[18] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
|
[19] |
GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015:1440-1448.
|
[20] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
|
[21] |
温奇, 李苓苓, 刘庆杰, 等. 基于视觉显著性和图分割的高分辨率遥感影像中人工目标区域提取[J]. 测绘学报, 2013, 42(6):831-837. WEN Qi, LI Lingling, LIU Qingjie, et al. A man-made object area extraction method based on visual saliency detection and graph-cut segmentation for high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6):831-837.
|
[22] |
沈佳洁, 潘励, 胡翔云. 可变形部件模型在高分辨率遥感影像建筑物检测中的应用[J]. 武汉大学学报(信息科学版), 2017, 42(9):1285-1291. SHEN Jiajie, PAN Li, HU Xiangyun. Building detection from high resolution remote sensing imagery based on a deformable part model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1285-1291.
|
[23] |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland:Springer, 2014:818-833.
|
[24] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego, California:[s.n.], 2015.
|
[25] |
EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The Pascal visual object classes challenge:a retrospective[J]. International Journal of Computer Vision, 2015, 111(1):98-136.
|