[1] HAHMANN S,BURGHARDT D.How Much Information is Geospatially Referenced? Networks and Cognition[J]. International Journal of Geographical Information Science, 2013, 27(6): 1171-1189. [2] INSELBERG A. The Plane with Parallel Coordinates[J]. The Visual Computer, 1985, 1(2): 69-91. [3] JOHNSON B, SHNEIDERMAN B. Tree-maps: A Space-filling Approach to the Visualization of Hierarchical Information Structures[C]//Proceedings of IEEE Conference on Visualization, 1991. San Diego, CA: IEEE, 1991: 284-291. [4] OPACH T, RØD J K. Do Choropleth Maps Linked with Parallel Coordinates Facilitate An Understanding of Multivariate Spatial Characteristics?[J]. Cartography and Geographic Information Science, 2014, 41(5): 413-429. [5] 艾廷华. 大数据驱动下的地图学发展[J]. 测绘地理信息, 2016, 41(2): 1-7. AI Tinghua. Development of Cartography Driven by Big Data[J]. Journal of Geomatics, 2016, 41(2): 1-7. [6] HUANG Y, SHEKHAR S, XIONG H. Discovering Colocation Patterns from Spatial Data Sets: A General Approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12): 1472-1485. [7] ESTIVILL-CASTRO V, LEE I. Data Mining Techniques for Autonomous Exploration of Large Volumes of Geo-referenced Crime Data[C]//Proceedings of the 6th International Conference on GeoComputation. Brisbane: University of Queensland, 2001: 24-26. [8] YOO J S, SHEKHAR S. A Joinless Approach for Mining Spatial Colocation Patterns[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10): 1323-1337. [9] RUI Yikang, YANG Zaigui, QIAN Tianlu, et al. Network-constrained and Category-based Point Pattern Analysis for Suguo Retail Stores in Nanjing,China[J]. International Journal of Geographical Information Science, 2016, 30(2): 186-199. [10] YAMADA I, THILL J C. Local Indicators of Network-constrained Clusters in Spatial Point Patterns[J]. Geographical Analysis, 2007, 39(3): 268-292. [11] BORRUSO G. Network Density Estimation: A GIS Approach for Analysing Point Patterns in A Network Space[J]. Transactions in GIS, 2008, 12(3): 377-402. [12] CRESSIE N. Statistics for Spatial Data[M]. 2nd ed. New York: John Wiley & Sons, 2015. [13] CHOU Y H. Exploring Spatial Analysis in Geographic Information Systems[M]. Santa Fe, NM: OnWord Press, 1997. [14] LESLIE T F, KRONENFELD B J. The Colocation Quotient: A New Measure of Spatial Association between Categorical Subsets of Points[J]. Geographical Analysis, 2011, 43(3): 306-326. [15] CROMLEY R G, HANINK D M, BENTLEY G C. Geographically Weighted Colocation Quotients: Specification and Application[J]. The Professional Geographer, 2014, 66(1): 138-148. [16] SHEKHAR S, HUANG Yan. Discovering Spatial Co-location Patterns: A Summary of Results[M]//JENSEN C S, SCHNEIDER M, SEEGER B, et al. Advances in Spatial and Temporal Databases. Berlin Heidelberg: Springer, 2001: 236-256. [17] 边馥苓, 万幼. k-邻近空间关系下的空间同位模式挖掘算法[J]. 武汉大学学报(信息科学版), 2009, 34(3): 331-334. BIAN Fuling, WAN You. A Novel Spatial Co-location Pattern Mining Algorithm Based on k-nearest Feature Relationship[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 331-334. [18] CELIK M, KANG J M, SHEKHAR S. Zonal Co-location Pattern Discovery with Dynamic Parameters[C]//Proceedings of the 7th IEEE International Conference on Data Mining. Omaha: IEEE, 2007: 433-438. [19] EICK C F, PARMAR R, DING Wei, et al. Finding Regional Co-location Patterns for Sets of Continuous Variables in Spatial Datasets[C]//Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Irvine, CA: ACM, 2008: 30. [20] QIAN Feng, CHIEW K, HE Qinming, et al. Mining Regional Co-location Patterns with kNNG[J]. Journal of Intelligent Information Systems, 2014, 42(3): 485-505. [21] BORRUSO G. Network Density Estimation: A GIS Approach for Analysing Point Patterns in A Network Space[J]. Transactions in GIS, 2008, 12(3): 377-402. [22] OKABE A, SUGIHARA K. Spatial Analysis along Networks: Statistical and Computational Methods[M]. Chichester, West Sussex: John Wiley & Sons, 2012. [23] OKABE A, YAMADA I. The K-function Method on A Network and Its Computational Implementation[J]. Geographical Analysis, 2001, 33(3): 271-290. [24] 田晶, 王一恒, 颜芬, 等. 一种网络空间现象同位模式挖掘的新方法[J]. 武汉大学学报(信息科学版), 2015, 40(5): 652-660. TIAN Jing, WANG Yiheng, YAN Fen et al. A New Method for Mining Co-location Patterns Between Network Spatial Phenomena[J].Geomatics and Information Science of Wuhan University, 2015, 40(5): 652-660. [25] OKABE A, SATOH T, SUGIHARA K. A Kernel Density Estimation Method for Networks, its Computational Method and a GIS-based Tool[J]. International Journal of Geographical Information Science, 2009, 23(1): 7-32. [26] 禹文豪, 艾廷华, 刘鹏程, 等. 设施POI分布热点分析的网络核密度估计方法[J]. 测绘学报, 2015, 44(12): 1378-1383. DOI: 10.11947/j.AGCS.2015.20140538. YU Wenhao, AI Tinghua,LIU Pengcheng,et al. Network Kernel Density Estimation for the Analysis of Facility POI Hotspots[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2): 1378-1383. DOI: 10.11947/j.AGCS.2015.20140538. [27] 程杰铭, 陈夏洁, 顾凯. 色彩学[M]. 2版. 北京: 科学出版社, 2006. CHENG Jieming, CHEN Xiajie, GU Kai. Chromatology[M]. 2nd ed. Beijing: Science Press, 2006. [28] 郭迁一. 深圳市基本生活单元公共服务设施配置研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. GUO Qianyi. Research on the Public Service Facilities' Allocation of Basic Living Unit in Shenzhen[D]. Harbin: Harbin Institute of Technology, 2012. |