[1] 管泽霖, 管铮, 黄谟涛, 等. 局部重力场逼近理论和方法[M]. 北京:测绘出版社, 1997. GUAN Zelin, GUAN Zheng, HUANG Motao, et al. Theory and Method of Regional Gravity Field Approximation[M]. Beijing:Surveying and Mapping Press, 1997. [2] HEISKANNEN W A, MORITZ H. Physical Geodesy[J]. Bulletin Géodésique, 1967, 86(1):491-492. [3] VANÍČEK P, HUANG J, NOVÁK P, et al. Determination of the Boundary Values for the Stokes-Helmert Problem[J]. Journal of Geodesy, 1999, 73(4):180-192. [4] 李建成. 最新中国陆地数字高程基准模型:重力似大地水准面CNGG2011[J]. 测绘学报, 2012, 41(5):651-660. LI Jiancheng. The Recent Chinese Terrestrial Digital Height Datum Model:Gravimetric Quasi-geoid CNGG2011[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5):651-660. [5] HUANG Jianliang, VÉRONNEAU M. Canadian Gravimetric Geoid Model 2010[J]. Journal of Geodesy, 2013, 87(8):771-790. [6] WANG Y M, SALEH J, LI X, et al. The US Gravimetric Geoid of 2009(USGG2009):Model Development and Evaluation[J]. Journal of Geodesy, 2012, 86(3):165-180. [7] 荣敏. Stokes-Helmert方法确定大地水准面的理论与实践[D]. 郑州:信息工程大学, 2015:43-68. RONG Min. Stokes-Helmert Method for Geoid Determination[D]. Zhengzhou:Information Engineering University, 2015:43-68. [8] SJÖBERG L E. Topographic Effects by the Stokes-Helmert Method of Geoid and Quasi-geoid Determinations[J]. Journal of Geodesy, 2000, 74(2):255-268. [9] SJÖBERG L E, NAHAVANDCHI H. On the Indirect Effect in the Stokes-Helmert Method of Geoid Determination[J]. Journal of Geodesy, 1999, 73(2):87-93. [10] NAHAVANDCHI H. The Direct Topographical Correction in Gravimetric Geoid Determination by the Stokes-Helmert Method[J]. Journal of Geodesy, 2000, 74(6):488-496. [11] NAHAVANDCHI H. Terrain Correction Computations by Spherical Harmonics and Integral Formulas[J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 1999, 24(1):73-78. [12] 罗志才, 陈永奇, 宁津生. 地形对确定高精度局部大地水准面的影响[J]. 武汉大学学报(信息科学版), 2003, 28(3):340-344. LUO Zhicai, CHEN Yongqi, NING Jinsheng. Effect of Terrain on the Determination of High Precise Local Gravimetric Geoid[J]. Geomatics and Information Science of Wuhan University, 2003, 28(3):340-344. [13] 章传银, 晁定波, 丁剑, 等. 球近似下地球外空间任意类型场元的地形影响[J]. 测绘学报, 2009, 38(1):28-34. ZHANG Chuanyin, CHAO Dingbo, DING Jian, et al. Precision Topographical Effects for Any Kind of Field Quantities for Any Altitude[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(1):28-34. [14] 郭春喜, 王惠民, 王斌. 全国高分辨率格网地形和均衡改正的确定[J]. 测绘学报, 2002, 31(3):201-205. GUO Chunxi, WANG Huimin, WANG Bin. Determination of High Resolution Grid Terrain and Isostatic Corrections in All China Area[J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(3):201-205. [15] 章传银, 晁定波, 丁剑, 等. 厘米级高程异常地形影响的算法及特征分析[J]. 测绘学报, 2006, 35(4):308-314. ZHANG Chuanyin, CHAO Dingbo, DING Jian, et al. Arithmetic and Characters Analysis of Terrain Effects for CM-order Precision Height Anomaly[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(4):308-314. [16] 荣敏, 周巍. 球近似地形改正的研究分析[J]. 大地测量与地形动力学, 2015, 35(1):58-61. RONG Min, ZHOU Wei. Study on Topography Correction Based on Spherical Approximation[J]. Journal of Geodesy and Geodynamics, 2015, 35(1):58-61. [17] 马健, 魏子卿, 武丽丽, 等. 有限范围的重力层间改正算法[J]. 测绘学报, 2017, 46(1):26-33. DOI:10.11947/j.AGCS.2017.20160173. MA Jian, WEI Ziqing, WU Lili, et al. The Bouguer Correction Algorithm for Gravity with Limited Range[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1):26-33. DOI:10.11947/j.AGCS.2017.20160173. [18] 魏子卿. 以地心参考椭球面为边界面的第二大地边值问题引论[J]. 测绘科学与工程, 2015, 35(1):1-6. WEI Ziqing. Introduction to the Second Geodetic Boundary-value Problem with the Geocentric Reference Ellipsoidal Surface as the Boundary[J]. Geomatics Science and Engineering, 2015, 35(1):1-6. [19] WANG Y M. Precise Computation of the Direct and Indirect Topographic Effects of Helmert's 2nd Method of Condensation Using SRTM30 Digital Elevation Model[J]. Journal of Geodetic Science, 2011, 1(4):305-312. [20] MAKHLOOF A A, ILK K H. Far-zone Effects for Different Topographic-compensation Models Based on a Spherical Harmonic Expansion of the Topography[J]. Journal of Geodesy, 2008, 82(10):613-635. [21] NOVÁK P, VANÍČEK P, MARTINEC Z, et al. Effects of the Spherical Terrain on Gravity and the Geoid[J]. Journal of Geodesy, 2001, 75(9-10):491-504. [22] MARTINEC Z, VANÍČEK P. The Indirect Effect of Topography in the Stokes-Helmert Technique for a Spherical Approximation of the Geoid[J]. Manuscript Geodaetica, 1994(19):213-219. [23] NAGY D, GAPP G, BENEDEK J. The Gravitational Potential and Its Derivatives for the Prism[J]. Journal of Geodesy, 2000, 74(7-8):552-560. [24] FORSBERG R. A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling[R]. Columbus:Ohio State University, 1984. [25] 马健, 魏子卿, 沈忱, 等. 地形改正与地形直接影响的转化关系[J]. 测绘科学技术学报, 2017, 34(3):245-250. MA Jian, WEI Ziqing, SHEN Chen, et al. Transformation Relation Between the Topographic Correction and the Direct Topographic Effect[J]. Journal of Geomatics Science and Technology, 2017, 34(3):245-250. [26] WICHIENCHAROEN C. The Indirect Effects on the Computation of Geoid Undulations[R].[S.l.]:NASA, 1982. [27] MARTINEC Z. Boundary-value Problems for Gravimetric Determination of a Precise Geoid[M]. Berlin:Springer, 1998. |