[1] 张兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5):1062-1090. ZHANG Bing. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016, 20(5):1062-1090. [2] BIOUCAS-DIAS J M, PLAZA A, DOBIGEON N, et al. Hyperspectral unmixing overview:geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2):354-379. [3] 陈晋, 马磊, 陈学泓, 等. 混合像元分解技术及其进展[J]. 遥感学报, 2016, 20(5):1102-1109. CHEN Jin, MA Lei, CHEN Xuehong, et al. Research progress of spectral mixture analysis[J]. Journal of Remote Sensing, 2016, 20(5):1102-1109. [4] YU Jie, CHEN Dongmei, LIN Yi, et al. Comparison of linear and nonlinear spectral unmixing approaches:a case study with multispectral TM imagery[J]. International Journal of Remote Sensing, 2017, 38(3):773-795. [5] FÉVOTTE C, DOBIGEON N. Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization[J]. IEEE Transactions on Image Processing, 2015, 24(12):4810-4819. [6] 李慧, 张金区, 曹阳, 等. 端元可变非线性混合像元分解模型[J]. 测绘学报, 2016, 45(1):80-86. DOI:10.11947/j.AGCS.2016.20140520. LI Hui, ZHANG Jinqu, CAO Yang, et al. Nonlinear spectral unmixing for optimizing per-pixel endmember sets[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1):80-86. DOI:10.11947/j.AGCS.2016.20140520. [7] WANG Xinyu, ZHONG Yanfei, ZHANG Liangpei, et al. Spatial group sparsity regularized nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11):6287-6304. [8] 王毓乾, 邵振峰. 高光谱影像稀疏解混的空间同质分析法[J]. 测绘学报, 2014, 43(6):607-612. DOI:10.13485/j.cnki.11-2089.2014.0096. WANG Yuqian, SHAO Zhenfeng. Sparse unmixing for hyperspectral image based on spatial homogeneous analysis[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6):607-612. DOI:10.13485/j.cnki.11-2089.2014.0096. [9] ZHANG Xiangrong, SUN Yujia, ZHANG Jingyan, et al. Hyperspectral Unmixing via Deep Convolutional Neural Networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11):1755-1759. [10] PRIEM F, OKUJENI A, VAN DER LINDEN S, et al. Comparing map-based and library-based training approaches for urban land-cover fraction mapping from Sentinel-2 imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 78:295-305. [11] OKUJENI A, VAN DER LINDEN S, HOSTERT P. Extending the vegetation-impervious-soil model using simulated EnMAP data and machine learning[J]. Remote Sensing of Environment, 2015, 158:69-80. [12] LICCIARDI G A, DEL FRATE F. Pixel unmixing in hyperspectral data by means of neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4163-4172. [13] ZHANG Liangpei, ZHANG Lefei, DU Bo. Deep learning for remote sensing data:a technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(2):22-40. [14] ZHU Xiaoxiang, TUIA D, MOU Lichao, et al. Deep learning in remote sensing:a comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4):8-36. [15] BALL J E, ANDERSON D T, CHAN C S. Comprehensive survey of deep learning in remote sensing:theories, tools, and challenges for the community[J]. Journal of Applied Remote Sensing, 2017, 11(4):042609. [16] LI Shutao, SONG Weiwei, FANG Leyuan, et al. Deep learning for hyperspectral image classification:an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6690-6709. [17] QU Ying, QI Hairong. uDAS:an untied denoising autoencoder with sparsity for spectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3):1698-1712. [18] SU Yuanchao, LI Jun, PLAZA A, et al. DAEN:deep autoencoder networks for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4309-4321. [19] PALSSON B, SIGURDSSON J, SVEINSSON J R, et al. Hyperspectral unmixing using a neural network autoencoder[J]. IEEE Access, 2018, 6:25646-25656. [20] SU Yuanchao, MARINONI A, LI Jun, et al. Stacked nonnegative sparse autoencoders for robust hyperspectral unmixing[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(9):1427-1431. [21] CHEN Yushi, JIANG Hanlu, LI Chunyang, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):6232-6251. [22] HUANG Bo, ZHAO Bei, SONG Yimeng. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery[J]. Remote Sensing of Environment, 2018, 214:73-86. [23] ZHANG Ce, SARGENT I, PAN Xin, et al. An object-based convolutional neural network (OCNN) for urban land use classification[J]. Remote Sensing of Environment, 2018, 216:57-70. [24] ARUN P V, BUDDHIRAJU K M, PORWAL A. CNN based sub-pixel mapping for hyperspectral images[J]. Neurocomputing, 2018, 311:51-64. [25] 焦李成, 赵进, 杨淑媛, 等. 深度学习、优化与识别[M]. 北京:清华大学出版社, 2017. JIAO Licheng, ZHAO Jin, YANG Shuyuan, et al. Deep learning, optimization and recognition[M]. Beijing:Tsinghua University Press, 2017. |