[1] 葛均波, 徐永健. 内科学[M]. 8版. 北京:人民卫生出版社, 2013:923-927. GE Junbo, XU Yongjian. Internal medicine[M]. 8th ed. Beijing:People's Health Publishing House, 2013:923-927. [2] ZHU Zhe, WOODCOCK C E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data:an algorithm designed specifically for monitoring land cover change[J]. Remote Sensing of Environment, 2014, 152:217-234. [3] CRIMINISI A, PÉREZ P, TOYAMA K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004, 13(9):1200-1212. [4] CHEN Bin, HUANG Bo, CHEN Lifan, et al. Spatially and temporally weighted regression:a novel method to produce continuous cloud-free Landsat imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1):27-37. [5] ZHANG Qiang, YUAN Qiangqiang, ZENG Chao, et al. Missing data reconstruction in remote sensing image with a unified spatial-temporal-spectral deep convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4274-4288. [6] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal:NIPS, 2014:2672-2680. [7] 林懿伦, 戴星原, 李力, 等. 人工智能研究的新前线:生成式对抗网络[J]. 自动化学报, 2018, 44(5):775-792. LIN Yilun, DAI Xingyuan, LI Li, et al. The new frontier of AI research:generative adversarial networks[J]. Acta Automatica Sinica, 2018, 44(5):775-792. [8] 赵树阳, 李建武. 基于生成对抗网络的低秩图像生成方法[J]. 自动化学报, 2018, 44(5):829-839. ZHAO Shuyang, LI Jianwu. Generative adversarial network for generating low-rank images[J]. Acta Automatica Sinica, 2018, 44(5):829-839. [9] 李雪, 张力, 王庆栋, 等. 多时相遥感影像语义分割色彩一致性对抗网络[J]. 测绘学报,2020,49(11):1473-1484. DOI:10.11947/j.AGCS.2020.20190439. LI Xue, ZHANG Li, WANG Qingdong, et al. Multi-temporal remote sensing imagery semantic segmentation color consistency adversarial network[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11):1473-1484. DOI:10.11947/j.AGCS.2020.20190439. [10] 陈玮, 李正旺, 尹钟. 基于生成对抗网络的图像去雾算法[J]. 信息与控制, 2019, 48(6):707-714, 722. CHEN Wei, LI Zhengwang, YIN Zhong. Image deblurring algorithm based on generative adversarial network[J]. Information and Control, 2019, 48(6):707-714, 722. [11] PATHAK D, KRÄHENBÜHL P, DONAHUE J, et al. Context encoders:feature learning by inpainting[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV:IEEE, 2016:2536-2544. [12] 张思雨, 李从利. 基于改进Criminisi算法的航拍图像厚云修复[J]. 激光与光电子学进展, 2018, 55(12):275-281. DOI:10. 3788/LOP55. 121012 ZHANG Siyu, LI Congli. Thick cloud restoration of aerial images based on improved criminisi algorithm[J]. Laser & Optoelectronics Progress, 2018, 55(12):275-281 DOI:10. 3788/LOP55. 121012. [13] 李从利, 张思雨, 韦哲, 等. 基于深度卷积生成对抗网络的航拍图像去厚云方法[J]. 兵工学报, 2019, 40(7):1434-1442. LI Congli, ZHANG Siyu, WEI Zhe, et al. Thick cloud removal for aerial images based on deep convolutional generative adversarial networks[J]. Acta Armamentarii, 2019, 40(7):1434-1442. [14] 李松明, 李岩, 李劲东. "天绘一号"传输型摄影测量与遥感卫星[J]. 遥感学报, 2012, 16(S1):10-16. LI Songming, LI Yan, LI Jindong. Mapping Satellite-1 transmission type photogrammetric and remote sensing satellite[J]. Journal of Remote Sensing, 2012, 16(S1):10-16. [15] 林竹翀, 柳丽, 王翔, 等. 天绘一号卫星覆盖性能分析与优化方法研究[J]. 遥感学报, 2019, 23(3):547-554. LIN Zhuchong, LIU Li, WANG Xiang, et al. Analysis and optimization of the coverage performance for the TH01 satellite[J]. Journal of Remote Sensing, 2019, 23(3):547-554. [16] DARABI S, SHECHTMAN E, BARNES C, et al. Image melding:combining inconsistent images using patch-based synthesis[J]. ACM Transactions on Graphics, 2012, 31(4):82. [17] HUANG Jiabin, KANG S B, AHUJA N, et al. Image completion using planar structure guidance[J]. ACM Transactions on Graphics, 2014, 33(4):129. [18] MAO Xudong, LI Qing, XIE Haoran, et al. Least squares generative adversarial networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice:IEEE, 2017:2813-2821. [19] PÉREZ P, GANGNET M, BLAKE A. Poisson image editing[C]//ACM SIGGRAPH 2003 Papers. California:ACM, 2003:313-318. DOI:10.1145/1201775.882269. [20] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Ft. Lauderdale:[s.n.], 2011:315-323. [21] ZHANG Xiaohu, ZOU Yuexian, SHI Wei. Dilated convolution neural network with LeakyReLU for environmental sound classification[C]//Proceedings of the 22nd International Conference on Digital Signal Processing (DSP). London:IEEE, 2017:1-5. [22] MARTIN Arjovsky S C, BOTTOU L. Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia. 2017. [23] Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics letters, 2008, 44(13):800-801. [24] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612. [25] MITTAL A, MURALIDHAR G S, GHOSH J, et al. Blind image quality assessment without human training using latent quality factors[J]. IEEE Signal Processing Letters, 2012, 19(2):75-78. |