[1] WANNINGER L, WALLSTAB-FREITAG S. Combined processing of GPS, GLONASS, and SBAS Code phase and carrier phase measurements[C]//Proceedings of 2011 International Technical Meeting of the Satellite Division of the Institute of Navigation.[S.l.]:Fort Worth Press, 2007:866-875. [2] REUSSNER N, WANNINGER L. GLONASS inter-frequency biases and their effects on RTK and PPP carrier-phase ambiguity resolution[C]//Proceedings of Inter-national Technical Meeting of the Satellite Division of the Institute of Navigation. Portland, Oregon, USA:[s.n.], 2011, 10(1):712-716. [3] SLEEWAGEN J, SIMSKY A, WILDE W, et al. Demystifying GLONASS inter-frequency carrier phase biases[J]. Inside GNSS, 2012, 7(3):57-61. [4] GENG J, ZHAO Q, SHI C, et al. A review on the inter-frequency biases of GLONASS carrier-phase data[J]. Journal of Geodesy, 91(3), 329-340. DOI:10.1007/s00190-016-0967-9. [5] WANNINGER L. Carrier-phase inter-frequency biases of GLONASS receivers[J]. Journal of Geodesy, 2012, 86(2):139-148. [6] BANVILLE S, COLLINS P, LAHAYE F. GLONASS ambiguity resolution of mixed receiver types without external calibration[J]. GPS Solutions, 2013, 17(3):275-282. DOI:10.1007/s10291-013-0319-7. [7] GENG J, BOCK Y. GLONASS fractional-cycle bias estimation across inhomogeneous receivers for PPP ambiguity resolution[J]. Journal of Geodesy, 2015, 90(4):379-396. DOI:10.1007/s00190-015-0879-0. [8] JIANG W, AN X, CHEN H, et al. A new method for GLONASS inter-frequency bias estimation based on long baselines[J]. GPS Solutions, 2017, 21(4):1765-1779. DOI:10.1007/s10291-017-0652-3. [9] TIAN Y, GE M, FRANK N, et al. Improvements on the particle-filter-based GLONASS phase inter-frequency bias estimation approach[J]. GPS Solutions, 2018, 22(5):1771-1780. DOI:10.1007/s10291-018-0735-9. [10] 隋心,徐爱功,郝雨时,等.实时GLONASSS相位频间偏差粒子群优化估计方法[J]. 测绘学报,2018,47(5):584-591. DOI:10.11947/j.AGCS.2018.20170391. SUI Xin, XU Aigong, HAO Yushi, et al. Real-time estimation method for GLONASS phase inter-frequency bias based on particle swarm optimization[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):584-591. DOI:10.11947/j.AGCS.2018.20170391. [11] HAUSCHILD A, MONTENBRUCK O. A study on the dependency of GNSS pseudorange biases on correlator spacing[J]. GPS Solutions, 2014, 18(2):159-171. DOI:10.1007/s10291-014-0426-0. [12] YAMADA H, TAKASU T, KUBO N, et al. Evaluation and calibration of receiver inter-channel biases for RTK-GPS/GLONASS[C]//Proceedings of ION GNSS 2010, Portland, Oregon, USA:[s.n.], 2010:1580-1587. [13] SHI C, YI W, SONG W, et al. GLONASS pseudorange inter-channel biases and their effects on combined GPS/GLONASS precise point positioning[J]. GPS Solutions, 2013, 17(4):439-451. [14] 刘志强,王解先,段兵兵. 单站多参数GLONASS码频间偏差估计及其对组合精密单点定位的影响[J]. 测绘学报, 2015, 44(2):150-159. DOI:10.11947/j.AGCS.2015.20130800. LIU Zhiqiang, WANG Jiexian,DUAN Bingbing. Estimation of GLONASS code inter- frequency biases with multiple parameters based on a single station and its impaction on combined precise point positioning[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2):150-159. DOI:10.11947/j.AGCS.2015.20130800. [15] 徐龙威,刘晖,舒宝,等. GLONASS频间码偏差特性分析及其在宽巷模糊度固定中的应用[J]. 测绘学报, 2018, 47(4):465-472. DOI:10.11947/j.AGCS.2018.20170430. XU Longwei, LIU Hui, SHU Bao, et al.Characteristics of GLONASS inter-frequency code bias and its application on wide-lane ambiguity resolution[J].Acta Geodaeticaet Cartographica Sinica, 2018, 47(4):465-472. DOI:10.11947/j.AGCS.2018.20170430. [16] LIU Y, GE M, SHI C, et al. Improving integer ambiguity resolution for GLONASS precise orbit determination[J]. Journal of Geodesy, 2016, 90(8):715-726. [17] AL-SHAERY A, ZHANG S, RIZOS C. An enhanced calibration method of GLONASS inter-channel bias for GNSS RTK[J]. GPS Solutions, 2013, 17(2):165-173. [18] CHEN L, LI M, HU Z, et al. Method for real-time self-calibrating GLONASS code inter-frequency bias and improvements on single point positioning[J]. GPS Solutions, 2018, 22(4). DOI:10.1007/s10291-018-0774-2. [19] MONTENBRUCK O, STEIGENBERGER P, PRANGE L, et al. The multi-GNSS experiment (MGEX) of the international GNSS service (IGS)-achievements, prospects and challenges[J]. Advances in Space Research, 2017, 59(7):1671-1697. [20] ZHANG X, HE X, LIU W. Characteristics of systematic errors in the BDS Hatch-Melbourne-Wübbena combination and its influence on wide-lane ambiguity resolution[J]. GPS Solutions, 2017, 21(1):265-277. [21] XU L, LIU H, SHU B, et al. GLONASS real-time wide-lane ambiguity resolution with an enhanced geometry-based model for medium-range baselines[J]. Advances in Space Research, 2018, 62(9):2467-2479. [22] BÖHM J, MÖLLER G, SCHINDELEGGER M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS Solutions, 2014, 18(3), 433-441. DOI:10.1007/s10291-014-0403-7. [23] FAN H. A two-step estimation method of troposphere delay with consideration of mapping function errors[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):76-84. DOI:10.11947/j.JGGS.2020.0108. [24] BRUYNINX C, LEGRAND J, FABIAN A, et al. GNSS metadata and data validation in the EUREF permanent network[J]. GPS Solutions, 2019, 23(4):106. DOI:10.1007/s10291-019-0880-9. [25] 李敏. 多模GNSS融合精密定轨理论及其应用研究[D].武汉:武汉大学,2011. LI Min. Research on multi-GNSS precise orbit determination theory and application[D]. Wuhan:Wuhan University, 2011. [26] TEUNISSEN P.J.G. The least-squares ambiguity decorrelation adjustment:a method for fast GPS integer ambiguity estimation[J]. Journal of Geodesy, 1995(70):65-82. [27] LI X, LV H, MA F, et al. GNSS RTK positioning augmented with large LEO constellation[J]. Remote Sensing, 2019, 11(3):228. |