[1] SHEKHAR S, JIANG Zhe, ALI R, et al. Spatiotemporal data mining:a computational perspective[J]. ISPRS International Journal of Geo-Information, 2015(4):2306-2338. [2] YU Hongbo, SHAW S L. Exploring potential human activities in physical and virtual spaces:a spatio-temporal GIS approach[J]. International Journal of Geographical Information Science, 2008, 22(4):409-430. [3] SHAW S L, YU Hongbo. A GIS-based time-geographic approach of studying individual activities and interactions in a hybrid physical-virtual space[J]. Journal of Transport Geography, 2009, 17(2):141-149. [4] 代维秀,陈占龙,谢鹏.居民出行与轨迹行为交互模式挖掘与关联技术[J].测绘学报, 2021, 50(4):532-543. DAI Weixiu, CHEN Zhanlong, XIE Peng. Research on the interactive mode of residents'behavior based on trajectory data mining[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4):532-543. [5] 吴华意,黄蕊,游兰,等.出租车轨迹数据挖掘进展[J].测绘学报, 2019, 48(11):1341-1356. WU Huayi, HUANG Rui, YOU Lan, et al. Recent progress in taxi trajectory data mining[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11):1341-1356. [6] 牟乃夏,张恒才,陈洁,等.轨迹数据挖掘城市应用研究综述[J].地球信息科学学报, 2015, 17(10):1136-1142. MOU Naixia, ZHANG Hengcai, CHEN Jie, et al. A review on the application research of trajectory data mining in urban cities[J]. Journal of Geo-Information Science, 2015, 17(10):1136-1142. [7] GUO Diansheng. Flow mapping and multivariate visualization of large spatial interaction data[J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6):1041-1048. [8] 陈占龙,周路林,禹文豪,等.顾及兴趣点潜在上下文关系的城市功能区识别[J].测绘学报, 2020, 49(7):907-920. CHEN Zhanlong, ZHOU Lulin, YU Wenhao, et al. Identification of the urban functional regions considering the potential context of interest points[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7):907-920. [9] 裴韬,王席,宋辞,等. COVID-19疫情时空分析与建模研究进展[J].地球信息科学学报, 2021, 23(2):188-210. PEI Tao, WANG Xi, SONG Ci, et al. Review on spatiotemporal analysis and modeling of COVID-19 pandemic[J]. Journal of Geo-Information Science, 2021, 23(2):188-210. [10] 尹宝才,赵霞,张勇,等.一种基于交通大数据的个体关联强度自动检测方法:中国,CN109359670A[P]. 2019-02-19. YIN Baocai, ZHAO Xia, ZHANG Yong, et al. An automatic detection method of individual association strength based on traffic big data:China, CN109359670A[P]. 2019-02-19. [11] 李有增,周全,蒋鸿玲.基于时空关联的高校社会网络关系挖掘方法研究[J].微电子学与计算机, 2018, 35(12):137-140. LI Youzeng, ZHOU Quan, JIANG Hongling. Research of method on mining social network relationship in colleges based on spatio-temporal correlation[J]. Microelectronics&Computer, 2018, 35(12):137-140. [12] 朱美玲,刘晨,王雄斌,等.基于车牌识别流数据的车辆伴随模式发现方法[J].软件学报, 2017, 28(6):1498-1515. ZHU Meiling, LIU Chen, WANG Xiongbin, et al. Approach to discover companion pattern based on ANPR data stream[J]. Journal of Software, 2017, 28(6):1498-1515. [13] VIEIRA M R, BAKALOV P, TSOTRAS V J. On-line discovery of flock patterns in spatio-temporal data[C]//Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle, Washington. New York:ACM Press, 2009:286-295. [14] JEUNG H, YIU M L, ZHOU Xiaofang, et al. Discovery of convoys in trajectory databases[J]. Proceedings of the VLDB Endowment, 2008, 1(1):1068-1080. [15] LI Yuxuan, BAILEY J, KULIK L. Efficient mining of platoon patterns in trajectory databases[J]. Data&Knowledge Engineering, 2015, 100:167-187. [16] 李勇男.伴随模式在反恐情报同步轨迹数据分析中的应用研究[J].现代情报, 2018(12):65-69. LI Yongnan. Application of adjoint pattern mining in the field of analyzing synchronization spatiotemporal trajectory of counter terrorism intelligence[J]. Journal of Modern Information, 2018(12):65-69. [17] 刘慧敏,刘青豪,陈袁芳,等.顾及时空邻近的恐怖团伙关系发现方法[J].地球信息科学学报, 2021, 23(4):584-592. LIU Huimin, LIU Qinghao, CHEN Yuanfang, et al. A method of finding the relationship between terrorist groups considering spatiotemporal proximity[J]. Journal of Geo-Information Science, 2021, 23(4):584-592. [18] 李欣.基于时空切分和词向量相似性的轨迹伴随模式挖掘[J].中山大学学报(自然科学版), 2019, 58(5):17-25. LI Xin. Trajectory accompanying patterns mining method based on spatial-time segmentation and word vector similarity[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(5):17-25. [19] HUANG Y, SHEKHAR S, XIONG H. Discovering colocation patterns from spatial data sets:a general approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12):1472-1485. [20] 廖闻剑,田小虎,邱秀连.基于轨迹相似度的伴随人员推荐[J].计算机系统应用, 2018, 27(4):157-161. LIAO Wenjian, TIAN Xiaohu, QIU Xiulian. Companion recommendation based on trajectory similarity[J]. Computer Systems&Applications, 2018, 27(4):157-161. [21] 赵卓峰,卢帅,韩燕波.基于海量车牌识别数据的相似轨迹查询方法[J].清华大学学报(自然科学版), 2017, 57(2):220-224. ZHAO Zhuofeng, LU Shuai, HAN Yanbo. Similar trajectory query method based on massive vehicle license plate recognition data[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(2):220-224. [22] 李智,李卫红.点模式条件下的犯罪嫌疑人时空同现模式挖掘与分析[J].地球信息科学学报, 2018, 20(6):827-836. LI Zhi, LI Weihong. Mining and analyzing spatiotemporal co-occurrence patterns among criminal suspects under point pattern[J]. Journal of Geo-Information Science, 2018, 20(6):827-836. [23] ANDRIENKO G, ANDRIENKO N, HEURICH M. An event-based conceptual model for context-aware movement analysis[J]. International Journal of Geographical Information Science, 2011, 25(9):1347-1370. [24] 张治华.基于GPS轨迹的出行信息提取研究[D].上海:华东师范大学, 2010. ZHANG Zhihua. Deriving trip information from GPS trajectories[D]. Shanghai:East China Normal University, 2010. [25] 向隆刚,吴涛,龚健雅.面向地理空间信息的轨迹模型及时空模式查询[J].测绘学报, 2014, 43(9):982-988. XIANG Longgang, WU Tao, GONG Jianya. A geo-spatial information oriented trajectory model and spatio-temporal pattern querying[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9):982-988. [26] ALLEN J F. Towards a general theory of action and time[J]. Artificial Intelligence, 1984, 23(2):123-154. [27] 舒红,陈军,杜道生,樊启斌.时空拓扑关系定义及时态拓扑关系描述[J].测绘学报, 1997, 26(4):299-306. SHU Hong, CHEN Jun, DU Daosheng, et al. Definition of spatio temporal topological relationships and description of temporal topological relationships[J]. Acta Geodaetica et Cartographic Sinica, 1997, 26(4):299-306. |