[1] 陆建. 城市交通系统可持续发展规划理论与方法[D]. 南京: 东南大学, 2003. LU Jian. Sustainable planning theory and method of urban transportation system[D]. Nanjing: Southeast University, 2003. [2] 唐炉亮, 阚子涵, 段倩, 等. 一种时空路径支持下的车辆油耗与排放估计方法[J]. 测绘学报, 2017, 46(12): 2024-2031. DOI: 10.11947/j.AGCS.2017.20160439. TANG Luliang, KAN Zihan, DUAN Qian, et al. A space-time path supported estimation approach for vehicles’ fuel-consumption and emissions[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(12): 2024-2031. DOI: 10.11947/j.AGCS.2017.20160439. [3] 唐炉亮, 牛乐, 杨雪, 等. 利用轨迹大数据进行城市道路交叉口识别及结构提取[J]. 测绘学报, 2017, 46(6): 770-779. DOI: 10.11947/j.AGCS.2017.20160614. TANG Luliang, NIU Le, YANG Xue, et al. Urban intersection recognition and construction based on big trace data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6): 770-779. DOI: 10.11947/j.AGCS.2017.20160614. [4] TALMOR I, MAHALEL D. Signal design for an isolated intersection during congestion[J]. Journal of the Operational Research Society, 2007, 58(4): 454-466. DOI: 10.1057/palgrave.jors.2602146. [5] 《中国公路学报》编辑部. 中国汽车工程学术研究综述·2017[J]. 中国公路学报, 2017, 30(6): 1-197. Editorial Department of China Journal of Highway and Transport. Review on China’s automotive engineering research progress: 2017[J]. China Journal of Highway and Transport, 2017, 30(6): 1-197. [6] 徐正, 王怿超, 黄璇, 等. 基于交通摄像头视频的车牌识别与测速[J]. 江西科学, 2012, 30(4): 528-531. XU Zheng, WANG Yichao, HUANG Xuan, et al. License plate recognition and speed based on the traffic camera video[J]. Jiangxi Science, 2012, 30(4): 528-531. [7] 高富荣, 方强. 机动车地感线圈测速监测系统性能和检测方法研究[J]. 上海计量测试, 2008, 35(2): 27-28. GAO Furong, FANG Qiang. The research on method of performance testing and verification for traffic loop-based speed meter[J]. Shanghai Measurement and Testing, 2008, 35(2): 27-28. [8] PREMEBIDA C, MONTEIRO G, NUNES U, et al. A LiDAR and vision-based approach for pedestrian and vehicle detection and tracking[C]//Proceedings of 2007 IEEE Intelligent Transportation Systems Conference. Bellevue, WA, USA: IEEE, 2007: 1044-1049. [9] CETIN M. Estimating queue dynamics at signalized intersections from probe vehicle data: methodology based on kinematic wave model[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2315(1): 164-172. DOI: 10.3141/2315-17. [10] HIRIBARREN G, HERRERA J C. Real time traffic states estimation on arterials based on trajectory data[J]. Transportation Research Part B: Methodological, 2014(69): 19-30. DOI: 10.1016/j.trb.2014.07.003. [11] 冯毅文. 基于大规模车辆轨迹数据的道路交叉口排队长度探测[D]. 深圳: 深圳大学, 2017. FENG Yiwen. Queue length detection of road intersection based on large scale vehicle trajectory data[D]. Shenzhen: Shenzhen University, 2017. [12] TIŠLJARIĆ L, ERDELIĆ T, CARIĆ T. Analysis of intersection queue lengths and level of service using GPS data[C]//Proceedings of 2018 International Symposium ELMAR. Zadar, Croatia: IEEE, 2018: 43-46. [13] 唐炉亮, 阚子涵, 任畅, 等. 利用GPS轨迹的转向级交通拥堵精细分析[J]. 测绘学报, 2019, 48(1): 75-85. DOI: 10.11947/j.AGCS.2019.20170448. TANG Luliang, KAN Zihan, REN Chang, et al. Fine-grained analysis of traffic congestions at the turning level using GPS traces[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 75-85. DOI: 10.11947/j.AGCS.2019.20170448. [14] 沈敬伟, 周廷刚, 朱晓波. 基于GPS浮动车数据的交通信息时空分布研究[J]. 西南大学学报(自然科学版), 2015, 37(8): 157-162. SHEN Jingwei, ZHOU Tinggang, ZHU Xiaobo. On the spatial and temporal distribution of traffic information based on GPS floating car data[J]. Journal of Southwest University (Natural Science Edition), 2015, 37(8): 157-162. [15] 李勇. 基于出租车GPS数据的城市交通拥堵识别和关联性分析[D]. 哈尔滨: 哈尔滨工业大学, 2016. LI Yong. Congestion identification and correlation analysis on urban traffic based on taxi GPS data[D]. Harbin: Harbin Institute of Technology, 2016. [16] 杨海强. 基于出租车GPS数据的城市常发性交通拥堵演变研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. YANG Haiqiang. Research of urban recurrent congestion evolution based on taxi GPS data[D]. Harbin: Harbin Institute of Technology, 2018. [17] 韩超, 宋苏, 王成红. 基于ARIMA模型的短时交通流实时自适应预测[J]. 系统仿真学报, 2004, 16(7): 1530-1532, 1535. HAN Chao, SONG Su, WANG Chenghong. A real-time short-term traffic flow adaptive forecasting method based on ARIMA model[J]. Journal of System Simulation, 2004, 16(7): 1530-1532, 1535. [18] THOMAS T, WEIJERMARS W, VAN BERKUM E. Predictions of urban volumes in single time series[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(1): 71-80. DOI: 10.1109/TITS.2009.2028149. [19] SUN Shiliang, ZHANG Changshui, YU Guoqiang. A Bayesian network approach to traffic flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1): 124-132. DOI: 10.1109/TITS.2006.869623. [20] MA Xiaolei, DAI Zhuang, HE Zhengbing, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818. DOI: 10.3390/s17040818. [21] 罗文慧, 董宝田, 王泽胜. 基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017, 17(5): 68-74. LUO Wenhui, DONG Baotian, WANG Zesheng. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 68-74. [22] 闫旭, 范晓亮, 郑传潘, 等. 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1147-1155. YAN Xu, FAN Xiaoliang, ZHENG Chuanpan, et al. Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(6): 1147-1155. [23] YU Bing, YIN Haoteng, ZHU Zhanxing. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: IJCAI, 2018: 3634-3640. [24] ZHANG Junbo, ZHENG Yu, QI Dekang, et al. Predicting citywide crowd flows using deep spatio-temporal residual networks[J]. Artificial Intelligence, 2018(259): 147-166. [25] ZHAO Ling, SONG Yujiao, ZHANG Chao, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. [26] EL-SHAWARBY I, RAKHA H, INMAN V W, et al. Evaluation of driver deceleration behavior at signalized intersections[J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 2018(1): 29-35. [27] 郑年波, 陆锋, 段滢滢. 道路转向延迟的动态对偶图模型[J]. 中国图象图形学报, 2010, 15(6): 915-920. ZHENG Nianbo, LU Feng, DUAN Yingying. Dynamic dual-graph model for turn delays on road networks[J]. Journal of Image and Graphics, 2010, 15(6): 915-920. [28] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI: 10.1162/neco.1997.9.8.1735. [29] MA Xiaolei, YU Haiyang, WANG Yunpeng, et al. Large-scale transportation network congestion evolution prediction using deep learning theory[J]. PLoS One, 2015, 10(3): e0119044. DOI: 10.1371/journal.pone.0119044. |