Acta Geodaetica et Cartographica Sinica ›› 2015, Vol. 44 ›› Issue (6): 591-601.doi: 10.11947/j.AGCS.2015.20150149
LI Deren1,2, LI Xi1,2
Received:
2015-03-12
Revised:
2015-04-14
Online:
2015-06-20
Published:
2015-07-28
CLC Number:
LI Deren, LI Xi. An Overview on Data Mining of Nighttime Light Remote Sensing[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6): 591-601.
[1] CROFT T A. Nighttime Images of the Earth from Space[J]. Scientific American, 1978, 239(1): 86-98. [2] ELVIDGE C D, BAUGH K E, KINH E A, et al. Relation between Satellite Observed Visible-near Infrared Emissions, Population, Economic Activity and Electric Power Consumption[J]. International Journal of Remote Sensing, 1997, 18(6): 1373-1379. [3] DOLL C N H, MULLER J P, MORLEY J G. Mapping Regional Economic Activity from Night-time Light Satellite Imagery[J]. Ecological Economics, 2006, 57(1): 75-92. [4] LI X, XU H M, CHEN X L, et al. Potential of NPP-VIIRS Nighttime Light Imagery for Modeling the Regional Economy of China[J]. Remote Sensing, 2013, 5(6): 3057-3081. [5] FORBES D J. Multi-scale Analysis of the Relationship between Economic Statistics and DMSP-OLS Night Light Images[J]. GIScience & Remote Sensing, 2013, 50(5): 483-499. [6] HENDERSON J V, STOREYGARD A, Weil D N. Measuring Economic Growth from Outer Space[J]. American Economic Review, 2012, 102(2): 994-1028. [7] CHEN X, NORDHAUS W D. Using Luminosity Data as a Proxy for Economic Statistics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(21): 8589-8594. [8] KEOLA S, ANDERSSON M, HALL O. Monitoring Economic Development from Space: Using Nighttime Light and Land Cover Data to Measure Economic Growth[J]. World Development, 2015, 66: 322-334. [9] GHOSH T, ANDERSON S, POWELL R L, et al. Estimation of Mexico's Informal Economy and Remittances Using Nighttime Imagery[J]. Remote Sensing, 2009, 1(3): 418-444. [10] DOLL C N H, MULLER J P, ELVIDGE C D. Night-time Imagery as a Tool for Global Mapping of Socioeconomic Parameters and Greenhouse Gas Emissions[J]. Ambio, 2000, 29(3): 157-162. [11] GHOSH T, POWELL R L, ELVIDGE C D, et al. Shedding Light on the Global Distribution of Economic Activity[J]. The Open Geography Journal, 2010, 3(1): 148-161. [12] SUTTON P, ROBERTS D, ELVIDGE C, et al. A Comparison of Nighttime Satellite Imagery and Population Density for the Continental United States[J]. Photogrammetric Engineering and Remote Sensing, 1997, 63(11): 1303-1313. [13] LO C P. Modeling the Population of China Using DMSP Operational Lines Cans System Nighttime Data[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67(9): 1037-1047. [14] ZHUO Li, CHEN Jin, SHI Peijun, et al. Modeling Population Density of China in 1998 Based on DMSP/OLS Nighttime Light Image[J]. Acta Geographica Sinica, 2005, 60(2): 266-276.(卓莉, 陈晋, 史培军, 等. 基于夜间灯光数据的中国人口密度模拟[J]. 地理学报, 2005, 60(2): 266-276.) [15] AMARAL S, MONTEIRO A M V, CAMARA G, et al. DMSP/OLS Night-time Light Imagery for Urban Population Estimates in the Brazilian Amazon[J]. International Journal of Remote Sensing, 2006, 27(5-6): 855-870. [16] BRIGGS D J, GULLIVER J, FECHT D, et al. Dasymetric Modelling of Small-area Population Distribution Using Land Cover and Light Emissions Data[J]. Remote Sensing of Environment, 2007, 108(4): 451-466. [17] ZENG C Q, ZHOU Y, WANG S X, et al. Population Spatialization in China Based on Night-time Imagery and Land Use Data[J]. International Journal of Remote Sensing, 2011, 32(24): 9599-9620. [18] YANG X C, YUE W Z, GAO D W. Spatial Improvement of Human Population Distribution Based on Multi-sensor Remote-sensing Data: An Input for Exposure Assessment[J]. International Journal of Remote Sensing, 2013, 34(15): 5569-5583. [19] GAO Yi, WANG Hui, WANG Peitao, et al. Population Spatial Processing for Chinese Coastal Zones Based on Census and Multiple Night Light Data[J]. Resources Science, 2013, 35(12): 2517-2523.(高义, 王辉, 王培涛, 等. 基于人口普查与多源夜间灯光数据的海岸带人口空间化分析[J]. 资源科学, 2013, 35(12): 2517-2523.) [20] LETU H, HARA M, YAGI H, et al. Estimating Energy Consumption from Night-time DMPS/OLS Imagery after Correcting for Saturation Effects[J]. International Journal of Remote Sensing, 2010, 31(16): 4443-4458. [21] MIN B, GABA K M, SARR O F, et al. Detection of Rural Electrification in Africa Using DMSP-OLS Night Lights Imagery[J]. International Journal of Remote Sensing, 2013, 34(22): 8118-8141. [22] LO C P. Urban Indicators of China from Radiance-calibrated Digital DMSP-OLS Nighttime Images[J]. Annals of the Association of American Geographers, 2002, 92(2): 225-240. [23] SHI K, HUANG C, YU B, et al. Evaluation of NPP-VIIRS Night-time Light Composite Data for Extracting Built-up Urban Areas[J]. Remote Sensing Letters, 2014, 5(4): 358-366. [24] YANG Xuchao, KANG Lili, ZHANG Bin, et al. Electricity Consumption Estimation Using Multi-sensor Remote Sensing Data: A Case Study of Zhejiang Province[J]. Scientia Geographica Sinica, 2013, 33(6): 718-723.(杨续超, 康丽莉, 张斌, 等. 基于多源遥感信息的电力消费量估算与影响因素分析: 以浙江省为例[J]. 地理科学, 2013, 33(6): 718-723.) [25] HE C Y, MA Q, LIU Z F, et al. Modeling the Spatiotemporal Dynamics of Electric Power Consumption in Mainland China Using Saturation-corrected DMSP/OLS Nighttime Stable Light Data[J]. International Journal of Digital Earth, 2014, 7(12): 993-1014. [26] DOLL C N H, MULLER J P, ELVIDGE C D. Night-time Imagery as a Tool for Global Mapping of Socioeconomic Parameters and Greenhouse Gas Emissions[J]. AMBIO: A Journal of the Human Environment, 2000, 29(3): 157-162. [27] GHOSH T, ELVIDGE C D, SUTTON P C, et al. Creating a Global Grid of Distributed Fossil Fuel CO2 Emissions from Nighttime Satellite Imagery[J]. Energies, 2010, 3(12): 1895-1913. [28] SU Yongxian, CHEN Xiuzhi, YE Yuyao, et al. The Characteristics and Mechanisms of Carbon Emissions from Energy Consumption in China Using DMSP/OLS Night Light Imageries[J]. Acta Geographica Sinica, 2013, 68(11): 1513-1526.(苏泳娴, 陈修治, 叶玉瑶, 等. 基于夜间灯光数据的中国能源消费碳排放特征及机理[J]. 地理学报, 2013, 68(11): 1513-1526.) [29] ELVIDGE C D, BAUGH K E, ANDERSON S J, et al. The Night Light Development Index (NLDI): A Spatially Explicit Measure of Human Development from Satellite Data[J]. Social Geography, 2012, 7(1): 23-35. [30] ELVIDGE C D, SUTTON P C, GHOSH T, et al. A Global Poverty Map Derived from Satellite Data[J]. Computers & Geosciences, 2009, 35(8): 1652-1660. [31] PINKOVSKIY M L. Economic Discontinuities at Borders: Evidence from Satellite Data on Lights at Night[J/OL]. [2013-03]. http://economics.mit.edu/files/7271. [32] KROTH V, LARCINESE V, WEHNER J. A Better Life for All? Democratization and Electrification in Post-apartheid South Africa[J/OL]. [2014-01]. http://personal.lse.ac.uk/LARCINES/electrification%202014%20working%20paper.pdf. [33] HENDERSON M, YEH E T, GONG P, et al. Validation of Urban Boundaries Derived from Global Night-time Satellite Imagery[J]. International Journal of Remote Sensing, 2003, 24(3): 595-609. [34] SMALL C, POZZI F, ELVIDGE C D. Spatial Analysis of Global Urban Extent from DMSP-OLS Night Lights[J]. Remote Sensing of Environment, 2005, 96(3-4): 277-291. [35] SMALL C, ELVIDGE C D, BALK D, et al. Spatial Scaling of Stable Night Lights[J]. Remote Sensing of Environment, 2011, 115(2): 269-280. [36] YANG Yang, HE Chunyang, ZHAO Yuanyuan, et al. Research on the Layered Threshold Method for Extracting Urban Land Using the DMSP/OLS Stable Nighttime Light Data[J]. Journal of Image and Graphics, 2011, 16(4): 666-673.(杨洋, 何春阳, 赵媛媛, 等. 利用DMSP/OLS稳定夜间灯光数据提取城镇用地信息的分层阈值法研究[J]. 中国图象图形学报, 2011, 16(4): 666-673.) [37] ZHOU Y Y, SMITH S J, ELVIDGE C D, et al. A Cluster-based Method to Map Urban Area from DMSP/OLS Nightlights[J]. Remote Sensing of Environment, 2014, 147(5): 173-185. [38] HE C Y, SHI P J, LI J G, et al. Restoring Urbanization Process in China in the 1990s by Using Non-radiance-calibrated DMSP/OLS Nighttime Light Imagery and Statistical Data[J]. Chinese Science Bulletin, 2006, 51(13): 1614-1620. [39] SHI K F, YU B L, HUANG Y X, et al. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data[J]. Remote Sensing, 2014, 6(2): 1705-1724. [40] CAO X, CHEN J, IMURA H, et al. A SVM-based Method to Extract Urban Areas from DMSP-OLS and SPOT VGT Data[J]. Remote Sensing of Environment, 2009, 113(10): 2205-2209. [41] LU D S, TIAN H Q, ZHOU G M, et al. Regional Mapping of Human Settlements in Southeastern China with Multisensor Remotely Sensed Data[J]. Remote Sensing of Environment, 2008, 112(9): 3668-3679. [42] YANG Y, HE C Y, ZHANG Q F, et al. Timely and Accurate National-scale Mapping of Urban Land in China Using Defense Meteorological Satellite Program's Operational Linescan System Nighttime Stable Light Data[J]. Journal of Applied Remote Sensing, 2013, 7(1): 73-86. [43] PANDEY B, JOSHI P K, SETO K C. Monitoring Urbanization Dynamics in India Using DMSP/OLS Night Time Lights and SPOT-VGT Data[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 23: 49-61. [44] ZHANG Q L, SETO K C. Mapping Urbanization Dynamics at Regional and Global Scales Using Multi-temporal DMSP/OLS Nighttime Light Data[J]. Remote Sensing of Environment, 2011, 115(9): 2320-2329. [45] LIU Z F, HE C Y, ZHANG Q F, et al. Extracting the Dynamics of Urban Expansion in China Using DMSP-OLS Nighttime Light Data from 1992 to 2008[J]. Landscape and Urban Planning, 2012, 106(1): 62-72. [46] ZHANG Q, SETO K C. Can Night-time Light Data Identify Typologies of Urbanization? A Global Assessment of Successes and Failures[J]. Remote Sensing, 2013, 5(7): 3476-3494. [47] PROPASTIN P, KAPPAS M. Assessing Satellite-observed Nighttime Lights for Monitoring Socioeconomic Parameters in the Republic of Kazakhstan[J]. GIScience & Remote Sensing, 2012, 49(4): 538-557. [48] LI X, CHEN X L, ZHAO Y S, et al. Automatic Intercalibration of Night-time Light Imagery Using Robust Regression[J]. Remote Sensing Letters, 2013, 4(1): 45-54. [49] YU B L, SHU S, LIU H X, et al. Object-based Spatial Cluster Analysis of Urban Landscape Pattern Using Nighttime Light Satellite Images: A Case Study of China[J]. International Journal of Geographical Information Science, 2014, 28(11): 2328-2355. [50] WEI Y, LIU H X, SONG W, et al. Normalization of Time Series DMSP-OLS Nighttime Light Images for Urban Growth Analysis with Pseudo Invariant Features[J]. Landscape and Urban Planning, 2014, 128: 1-13. [51] YI K P, TANI H, LI Q, et al. Mapping and Evaluating the Urbanization Process in Northeast China Using DMSP/OLS Nighttime Light Data[J]. Sensors, 2014, 14(2): 3207-3226. [52] LIAO Bing, WEI Kangxia, SONG Weiwei. Assessment and Application of DMSP/OLS Night-time Light Data in the Spatial Structure of Urban System: A Case of Jiangxi Province in Nearly 16 Years[J]. Resources and Environment in the Yangtze Basin, 2012, 21(11): 1295-1300.(廖兵, 魏康霞, 宋巍巍. DMSP/OLS夜间灯光数据在城镇体系空间格局研究中的应用与评价: 以近16年江西省间城镇空间格局为例[J]. 长江流域资源与环境, 2012, 21(11): 1295-1300.) [53] FAN Junfu, MA Ting, ZHOU Chenghu, et al. Changes in Spatial Patterns of Urban Landscape in Bohai Rim from 1992 to 2010 Using DMSP-OLS Data[J]. Journal of Geo-Information Science, 2013, 15(2): 280-288.(范俊甫, 马廷, 周成虎, 等. 1992-2010年基于DMSP-OLS图像的环渤海城市群空间格局变化分析[J]. 地球信息科学学报, 2013, 15(2): 280-288.) [54] XU Mengjie, CHEN Li, LIU Huanjin, et al. Pattern and Process of Urbanization in the Yangtze Delta Based on DMSP/OLS Data[J]. Remote Sensing for Land & Resources, 2011(3): 106-112.(徐梦洁, 陈黎, 刘焕金, 等. 基于DMSP/OLS夜间灯光数据的长江三角洲地区城市化格局与过程研究[J]. 国土资源遥感, 2011(3): 106-112.) [55] SMALL C, ELVIDGE C D. Night on Earth: Mapping Decadal Changes of Anthropogenic Night Light in Asia[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 22: 40-52. [56] WU Jiansheng, LIU Hao, PENG Jian, et al. Hierarchical Structure and Spatial Pattern of China's Urban System: Evidence from DMSP/OLS Nightlight Data[J]. Acta Geographica Sinica, 2014, 69(6): 759-770. (吴健生, 刘浩, 彭建, 等. 中国城市体系等级结构及其空间格局: 基于DMSP/OLS 夜间灯光数据的实证[J]. 地理学报, 2014, 69(6): 759-770.) [57] DE SOUZA FILHO C R, ZULLO Jr J, ELVIDGE C. Brazil's 2001 Energy Crisis Monitored from Space[J]. International Journal of Remote Sensing, 2004, 25(12): 2475-2482. [58] KOHIYAMA M, HAYASHI H, MAKI N, et al. Early Damaged Area Estimation System Using DMSP-OLS Night-time Imagery[J]. International Journal of Remote Sensing, 2004, 25(11): 2015-2036. [59] CAO C, SHAO X, UPRETY S, et al. Detecting Light Outages after Severe Storm Using the S-NPP/VIIRS Day/Night Band Radiances[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1582-1586. [60] LI X, GE L L, CHEN X L. Detecting Zimbabwe's Decadal Economic Decline Using Nighttime Light Imagery[J]. Remote Sensing, 2013, 5(9): 4551-4570. [61] AGNEW J, GILLESPIE T W, GONZALEZ J, et al. Baghdad Nights: Evaluating the US Military 'Surge' Using Nighttime Light Signatures[J]. Environment and Planning A, 2008, 40(10): 2285-2295. [62] WITMER F D W, O'LOUGHLIN J. Detecting the Effects of Wars in the Caucasus Regions of Russia and Georgia Using Radiometrically Normalized DMSP-OLS Nighttime Lights Imagery[J]. GIScience & Remote Sensing, 2011, 48(4): 478-500. [63] LI X, CHEN F R, CHEN X L. Satellite-observed Nighttime Light Variation as Evidence for Global Armed Conflicts[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(5): 2302-2315. [64] LI X, LI D R. Can Night-time Light Images Play a Role in Evaluating the Syrian Crisis?[J]. International Journal of Remote Sensing, 2014, 35(18): 6648-6661. [65] IMHOFF M L, LAWRENCE W T, ELVIDGE C D, et al. Using Nighttime DMSP/OLS Images of City Lights to Estimate the Impact of Urban Land Use on Soil Resources in the United States[J]. Remote Sensing of Environment, 1997, 59(1): 105-117. [66] IMHOFF M L, TUCKER C J, LAWRENCE W T, et al. The Use of Multisource Satellite and Geospatial Data to Study the Effect of Urbanization on Primary Productivity in the United States[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(6): 2549-2556. [67] ZHAO N Z, CURRIT N, SAMSON E. Net Primary Production and Gross Domestic Product in China Derived from Satellite Imagery[J]. Ecological Economics, 2011, 70(5): 921-928. [68] COVA T J, SUTTON P C, THEOBALD D M. Exurban Change Detection in Fire-prone Areas with Nighttime Satellite Imagery[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(11): 1249-1257. [69] HE C Y, LIU Z F, TIAN J, et al. Urban Expansion Dynamics and Natural Habitat Loss in China: A Multiscale Landscape Perspective[J]. Global Change Biology, 2014, 20(9): 2886-2902. [70] KUECHLY H U, KYBA C C M, RUHTZ T, et al. Aerial Survey and Spatial Analysis of Sources of Light Pollution in Berlin, Germany[J]. Remote Sensing of Environment, 2012, 126: 39-50. [71] BENNIE J, DAVIES T W, DUFFY J P, et al. Contrasting Trends in Light Pollution Across Europe Based on Satellite Observed Night Time Lights[J]. Scientific Reports, 2014, 4. doi: 10.1038/srep03789. [72] KLOOG I, HAIM A, STEVENS R G, et al. Light at Night Co-distributes with Incident Breast but Not Lung Cancer in the Female Population of Israel[J]. Chronobiology International, 2008, 25(1): 65-81. [73] BAUER S E, WAGNER S E, BURCH J, et al. A Case-referent Study: Light at Night and Breast Cancer Risk in Georgia[J]. International Journal of Health Geographies, 2013, 12(1): 23. [74] KLOOG I, HAIM A, STEVENS R G, et al. Global Co-distribution of Light at Night (LAN) and Cancers of Prostate, Colon, and Lung in Men[J]. Chronobiology International, 2009, 26(1): 108-125. [75] VOLLMER C, MICHEL U, RANDLER C. Outdoor Light at Night (LAN) is Correlated with Eveningness in Adolescents[J]. Chronobiology International, 2012, 29(4): 502-508. [76] MAZOR T, LEVIN N, POSSINGHAM H P, et al. Can Satellite-based Night Lights Be Used for Conservation? The Case of Nesting Sea Turtles in the Mediterranean[J]. Biological Conservation, 2013, 159: 63-72. [77] RODRIGUES P, AUBRECHT C, GIL A, et al. Remote Sensing to Map Influence of Light Pollution on Cory's Shearwater in Sao Miguel Island, Azores Archipelago[J]. European Journal of Wildlife Research, 2012, 58(1): 147-155. [78] DWYER R G, BEARHOP S, CAMPBELL H A, et al. Shedding Light on Light: Benefits of Anthropogenic Illumination to a Nocturnally Foraging Shorebird[J]. Journal of Animal Ecology, 2013, 82(2): 478-485. [79] WALUDA C M, YAMASHIRO C, ELVIDGE C D, et al. Quantifying Light-fishing for Dosidicus Gigas in the Eastern Pacific Using Satellite Remote Sensing[J]. Remote Sensing of Environment, 2004, 91(2): 129-133. [80] WALUDA C M, GRIFFITHS H J, RODHOUSE P G. Remotely Sensed Spatial Dynamics of the Illex Argentinus Fishery, Southwest Atlantic[J]. Fisheries Research, 2008, 91(2-3): 196-202. [81] KIYOFUJI H, SAITOH S I. Use of Nighttime Visible Images to Detect Japanese Common Squid Todarodes Pacificus Fishing Areas and Potential Migration Routes in the Sea of Japan[J]. Marine Ecology Progress Series, 2004, 276: 173-186. [82] CHO K, ITO R, SHIMODA H, et al. Technical Note and Cover Fishing Fleet Lights and Sea Surface Temperature Distribution Observed by DMSP/OLS Sensor[J]. International Journal of Remote Sensing, 1999, 20(1): 3-9. [83] AUBRECHT C, ELVIDGE C D, LONGCORE T, et al. A Global Inventory of Coral Reef Stressors Based on Satellite Observed Nighttime Lights[J]. Geocarto International, 2008, 23(6): 467-479. [84] BHARTI N, TATEM A J, FERRARI M J, et al. Explaining Seasonal Fluctuations of Measles in Niger Using Nighttime Lights Imagery[J]. Science, 2011, 334(6061): 1424-1427. [85] ELVIDGE C D, ZISKIN D, BAUGH K E, et al. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data[J]. Energies, 2009, 2(3): 595-622. [86] SCHUELER C F, LEE T F, MILLER S D. VIIRS Constant Spatial-resolution Advantages[J]. International Journal of Remote Sensing, 2013, 34(16): 5761-5777. [87] ELVIDGE C, ZHIZHIN M, HSU F C, et al. VIIRS Night Fire: Satellite Pyrometry at Night[J]. Remote Sensing, 2013, 5(9): 4423-4449. [88] LEVIN N, JOHANSEN K, HACKER J M, et al. A New Source for High Spatial Resolution Night Time Images—The EROS-B Commercial Satellite[J]. Remote Sensing of Environment, 2014, 149: 1-12. [89] TUTTLE B T. Aladdin's Magic Lamp: Developing Methods for Calibration and Geolocation Accuracy Assessment of the DMSP OLS[D]. Denver: University of Denver, 2012: 173-186. |
[1] | ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, HU Xiangyun. Review and prospect in change detection of multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107. |
[2] | WANG Qiao. Research framework of remote sensing monitoring and real-time diagnosis of earth surface anomalies [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1141-1152. |
[3] | ZHANG Kefei, LI Haobo, WANG Xiaoming, ZHU Dantong, HE Qimin, LI Longjiang, HU Andong, ZHENG Nanshan, LI Huaizhan. Recent progresses and future prospectives of ground-based GNSS water vapor sounding [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1172-1191. |
[4] | ZHANG Liangpei, HE Jiang, YANG Qianqian, XIAO Yi, YUAN Qiangqiang. Data-driven multi-source remote sensing data fusion: progress and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337. |
[5] | WU Lixin, QI Yuan, MAO Wenfei, LIU Shanjun, DING Yifan, JING Feng, SHEN Xuhui. Progresses and possible frontiers in the study on seismic applications of multi-frequency and multi-polarization passive microwave remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1356-1371. |
[6] | XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. |
[7] | LIU Yaolin, LIU Qiliang, DENG Min, SHI Yan. Recent advance and challenge in geospatial big data mining [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1544-1560. |
[8] | LI Deren, WANG Mi, YANG Fang. A new generation of intelligent mapping and remote sensing scientific test satellite Luojia-3 01 [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 789-796. |
[9] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[10] | ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. |
[11] | LI Rongxing, LI Guojun, FENG Tiantian, SHEN Qiang, QIAO Gang, YE Zhen, XIA Menglian. A review of Antarctic ice velocity products and methods based on optical remote sensing satellite images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 953-963. |
[12] | CHENG Jiehai, HUANG Zhongyi, WANG Jianru, HE Shi. The automatic determination method of the optimal segmentation result of high-spatial resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 658-667. |
[13] | BAI Kun, MU Xiaodong, CHEN Xuebing, ZHU Yongqing, YOU Xuanang. Unsupervised remote sensing image scene classification based on semi-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 691-702. |
[14] | GONG Jianya, ZHANG Mi, HU Xiangyun, ZHANG Zhan, LI Yansheng, Jiang Liangcun. The design of deep learning framework and model for intelligent remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475-487. |
[15] | TONG Xiaohua, LIU Shijie, XIE Huan, XU Xiong, YE Zhen, FENG Yongjiu, WANG Chao, LIU Sicong, JIN Yanmin, CHEN Peng, HONG Zhonghua, LUAN Kuifeng. From Earth mapping to extraterrestrial planet mapping [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 488-500. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||