[1] 吴一戎, 朱敏慧. 合成孔径雷达技术的发展现状与趋势[J]. 遥感技术与应用, 2000, 15(2):121-123. WU Yirong, ZHU Minhui. The developing status and trends of synthetic aperture radar[J]. Remote Sensing Technology and Application, 2000, 15(2):121-123. [2] 王腾, 徐向东, 董云龙, 等.合成孔径雷达的发展现状和趋势[J].舰船电子工程,2009,29(5):5-9. WANG Teng, XU Xiangdong, DONG Yunlong, et al. Present state and development trends of synthetic aperture radar[J].Ship Electronic Engineering,2009,29(5):5-9. [3] 邓云凯, 赵凤军, 王宇.星载SAR技术的发展趋势及应用浅析[J].雷达学报,2012,1(1):1-10. DENG Yunkai, ZHAO Fengjun, WANG Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1):1-10. [4] 耿旭朴, 薛思涵. 合成孔径雷达星座发展综述[J]. 地理信息世界, 2017, 24(4):58-63. GENG Xupu, XUE Sihan. Trend analysis of SAR constellation[J]. Geomatics World, 2017, 24(4):58-63. [5] 朱岱寅, 杨鸣冬, 宋伟, 等. 高分辨率极化合成孔径雷达成像研究进展[J]. 数据采集与处理, 2016, 31(4):640-664. ZHU Daiyin, YANG Mingdong, SONG Wei, et al. Advances in high resolution polarimetric synthetic aperture radar imaging[J]. Journal of Data Acquisition and Processing, 2016, 31(4):640-664. [6] 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1):1-33. DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1):1-33. [7] 楼良盛, 刘志铭, 张昊, 等. 天绘二号卫星工程设计与实现[J]. 测绘学报, 2020, 49(10):1252-1264. DOI:10.11947/j.AGCS.2020.20200175. LOU Liangsheng, LIU Zhiming, ZHANG Hao, et al. TH-2 satellite engineering design and implementation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10):1252-1264. DOI:10.11947/j.AGCS.2020.20200175. [8] TANG Xinming, LI Tao, GAO Xiaoming, et al. Research on key technologies of precise InSAR surveying and mapping applications using automatic SAR imaging[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1):72. [9] CHEN Yu, ZHENHONG Li, LIN Bai, et al. Successful applications of generic atmospheric correction online service for InSAR (GACOS) to the reduction of atmospheric effects on InSAR observations[J]. Journal of Geodesy and Geoinformation Science 2021(1):109-115. [10] 钱方明.微波干涉测绘卫星干涉定标关键技术研究[D].郑州:信息工程大学, 2020. QIAN Fangming. Research on key technologies of interferometric calibration for microwave interferometric surveying and mapping satellites[D]. Zhengzhou:Information Engineering University, Zhenzhou:2020. [11] 朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2):135-144. DOI:10.11947/j.AGCS.2019.20180188. ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):135-144. DOI:10.11947/j.AGCS.2019.20180188. [12] 张勤, 黄观文, 杨成生.地质灾害监测预警中的精密空间对地观测技术[J].测绘学报, 2017, 46(10):1300-1307.DOI:10.11947/j.AGCS.2017.20170453. ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1300-1307.DOI:10.11947/j.AGCS. 2017. 20170453. [13] GARTHWAITE M. On the design of radar corner reflectors for deformation monitoring in multi-frequency InSAR[J]. Remote Sensing, 2017, 9(7):648. [14] 王哲远, 李元祥, 郁文贤. SAR图像质量评价综述[J]. 遥感信息, 2016, 31(5):1-10. WANG Zheyuan, LI Yuanxiang, YU Wenxian. Review on SAR image quality assessment[J]. Remote Sensing Information, 2016, 31(5):1-10. [15] 时红伟, 陈世平. 一种面向用户任务需求的遥感图像质量标准-NIIRS[J]. 航天返回与遥感, 2003, 24(3):30-35. SHI Hongwei, CHEN Shiping. A remote sensing image quality standard orienting to user's mission requirements-NIIRS[J]. Spacecraft Recovery & Remote Sensing, 2003, 24(3):30-35. [16] 赵良波, 李延, 张庆君, 等. 高分三号卫星图像质量指标设计与验证[J]. 航天器工程, 2017, 26(6):18-23. ZHAO Liangbo, LI Yan, ZHANG Qingjun, et al. Design and verification of image quality indexes of GF-3 satellite[J]. Spacecraft Engineering, 2017, 26(6):18-23. [17] VESPE M, GREIDANUS H. SAR image quality assessment and indicators for vessel and oil spill detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11):4726-4734. [18] LU Xin, SUN Hong. Parameter assessment for SAR image quality evaluation system[C]//Proceedings of 2007 Asian and Pacific Conference on Synthetic Aperture Radar. Huangshan, China:IEEE, 2007:58-60. [19] GUO Jiajia, WANG Kaizhi, JIN Yiran, et al. High precision calculation of SAR image quality parameters[C]//Proceedings of 2015 IEEE Asia-Pacific Conference on Synthetic Aperture Radar. Singapore:IEEE, 2015:367-370. [20] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2004, 13(4):600-612. [21] 刘锦帆, 徐浩煜, 梁兴东, 等. 基于HVS结构相似度的极化SAR图像质量评价方法[J]. 国外电子测量技术, 2015, 34(11):19-26. LIU Jinfan, XU Haoyu, LIANG Xingdong, et al. Improved method of polarimetric SAR image quality assessment based on human visual system and structural similarity[J]. Foreign Electronic Measurement Technology, 2015, 34(11):19-26. [22] JUNG C H, CHOI M S, KWAG Y K. Parameter based SAR simulator for image quality evaluation[C]//Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona, Spain:IEEE, 2007:1599-1602. [23] JIAO Xinyuan, YU Ze, ZOU Donghai, et al. An application-oriented quality evaluation for SAR image[C]//Proceedings of the 25th IET Irish Signals & Systems Conference 2014 and 2014 China-Ireland International Conference on Information and Communities Technologies (ISSC 2014/CIICT 2014). Limerick, Ireland:Institution of Engineering and Technology, 2014. [24] 王荣彬, 李平湘, 季宏伟, 等. 遥感影像的辐射质量评价方法[J]. 遥感信息, 2015, 30(2):10-16, 49. WANG Rongbin, LI Pingxiang, JI Hongwei, et al. An overview on radiation quality evaluation methods of remote sensing imagery[J]. Remote Sensing Information, 2015, 30(2):10-16, 49. [25] 王占宏. 遥感影像信息量及质量度量模型的研究[D]. 武汉:武汉大学, 2004. WANG Zhanhong. A research on the metric model for remote sensing entropy and qulity[D]. Wuhan:Wuhan University, 2004. |