Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (8): 1598-1609.doi: 10.11947/j.AGCS.2024.20220690
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
Yibo XING1(), Bin HAN1, Bingkun BAO2()
Received:
2022-12-06
Published:
2024-09-25
Contact:
Bingkun BAO
E-mail:njupt_xyb@163.com;njupt_xyb@163.com;bingkunbao@njupt.edu.cn
About author:
XING Yibo (1997—), male, postgraduate, majors in remote sensing image processing. E-mail: njupt_xyb@163.com
Supported by:
CLC Number:
Yibo XING, Bin HAN, Bingkun BAO. River SAR image segmentation using L1 norm based hybrid active contours[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1598-1609.
Tab.1
The accuracy and false alarm of segmentation results by nine models"
模型 | 图像1 | 图像2 | 图像3 | 图像4 | 图像5 | 图像6 | 图像7 | 图像8 | 图像9 | 图像10 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
准确率 | 虚警率 | 准确率 | 虚警率 | 准确率 | 虚警率 | 准确率 | 虚警率 | 准确率 | 虚警率 | 准确率 | 虚警率 | 准确率 | 虚警率 | 准确率 | 虚警率 | 准确率 | 虚警率 | 准确率 | 虚警率 | |
CV模型 | 52.48 | 75.81 | 83.56 | 49.18 | 78.97 | 28.74 | 65.77 | 91.92 | 68.42 | 80.27 | 72.11 | 68.60 | 47.53 | 91.25 | 46.78 | 80.79 | 61.75 | 77.32 | 51.29 | 83.68 |
GLSPF模型 | 62.27 | 62.98 | 64.87 | 67.99 | 68.55 | 41.09 | 58.26 | 94.24 | 54.05 | 87.77 | 61.42 | 75.98 | 55.43 | 90.14 | 56.56 | 77.40 | 66.78 | 74.70 | 58.76 | 81.31 |
FGLFE模型 | 74.68 | 55.69 | 75.56 | 62.34 | 78.32 | 28.68 | 64.21 | 92.26 | 63.97 | 76.95 | 74.56 | 65.36 | 51.89 | 90.61 | 50.29 | 79.72 | 60.95 | 77.61 | 54.42 | 82.92 |
CE模型 | 84.48 | 26.22 | 89.15 | 38.16 | 83.14 | 25.27 | 73.68 | 90.47 | 75.17 | 76.95 | 82.56 | 57.69 | 81.18 | 79.17 | 69.41 | 70.92 | 71.89 | 71.42 | 65.90 | 79.20 |
MSCE模型 | 85.34 | 24.68 | 91.49 | 30.78 | 86.61 | 21.99 | 82.50 | 87.17 | 77.84 | 73.91 | 86.72 | 50.53 | 84.75 | 75.52 | 87.97 | 47.89 | 72.29 | 70.60 | 74.94 | 72.70 |
WL1LP模型 | 98.34 | 2.31 | 94.30 | 19.42 | 98.81 | 1.13 | 93.42 | 70.02 | 88.89 | 63.35 | 94.01 | 28.02 | 93.69 | 52.13 | 94.78 | 25.83 | 90.91 | 44.12 | 90.11 | 53.45 |
LT模型 | 72.68 | 59.68 | 70.17 | 65.18 | 78.12 | 29.91 | 74.22 | 90.16 | 57.23 | 84.11 | 76.01 | 64.13 | 52.01 | 90.16 | 50.19 | 80.01 | 61.10 | 77.31 | 55.60 | 82.59 |
THFC模型 | 86.68 | 21.23 | 92.62 | 23.86 | 86.32 | 22.56 | 95.68 | 68.26 | 93.68 | 42.68 | 93.68 | 28.84 | 92.56 | 63.69 | 88.02 | 49.62 | 92.02 | 39.35 | 88.35 | 58.68 |
本文模型 | 98.55 | 1.04 | 98.52 | 2.12 | 97.17 | 2.58 | 97.83 | 11.93 | 98.31 | 6.37 | 98.65 | 2.41 | 98.54 | 6.97 | 97.52 | 4.22 | 97.25 | 5.79 | 98.02 | 6.22 |
Tab.2
Running time of nine models"
模型 | 图像1 | 图像2 | 图像3 | 图像4 | 图像5 | 图像6 | 图像7 | 图像8 | 图像9 | 图像10 |
---|---|---|---|---|---|---|---|---|---|---|
CV模型 | 1.97 | 1.23 | 0.74 | 1.83 | 0.81 | 1.21 | 2.56 | 1.81 | 2.32 | 2.96 |
GLSPF模型 | 5.58 | 3.86 | 3.02 | 4.82 | 3.21 | 4.76 | 7.65 | 5.32 | 6.87 | 9.16 |
FGLFE模型 | 4.06 | 2.45 | 2.08 | 3.76 | 2.06 | 4.22 | 5.32 | 4.01 | 4.87 | 6.03 |
CE模型 | 2.49 | 1.55 | 1.13 | 2.79 | 1.22 | 3.68 | 3.86 | 2.20 | 2.94 | 4.54 |
MSCE模型 | 2.89 | 1.64 | 1.34 | 3.25 | 1.43 | 4.03 | 4.12 | 2.89 | 3.54 | 5.13 |
WL1LP模型 | 1.54 | 1.17 | 1.02 | 1.18 | 0.75 | 1.15 | 2.20 | 1.27 | 2.39 | 1.92 |
LT模型 | 3.86 | 2.27 | 1.98 | 3.31 | 1.98 | 3.75 | 4.86 | 3.21 | 4.21 | 5.72 |
THFC模型 | 5.03 | 3.35 | 2.16 | 3.89 | 2.23 | 4.25 | 6.71 | 4.13 | 5.68 | 7.11 |
本文模型 | 1.67 | 1.16 | 1.01 | 1.13 | 0.68 | 1.02 | 2.13 | 1.07 | 2.01 | 1.98 |
Tab.3
Accuracy and false alarm rate of the segmentation results for the four models"
图像 | RDU-Net模型 | AU-Net模型 | DAU-Net模型 | 本文模型 | ||||
---|---|---|---|---|---|---|---|---|
准确率 | 虚警率 | 准确率 | 虚警率 | 准确率 | 虚警率 | 准确率 | 虚警率 | |
图像1 | 84.09 | 26.54 | 86.01 | 19.56 | 88.49 | 15.00 | 98.55 | 1.04 |
图像2 | 97.49 | 8.48 | 97.70 | 1.99 | 98.10 | 2.67 | 98.52 | 2.12 |
图像3 | 93.23 | 14.24 | 96.09 | 8.86 | 96.52 | 6.40 | 97.17 | 2.58 |
图像4 | 96.26 | 51.02 | 97.19 | 36.38 | 96.93 | 44.13 | 97.83 | 11.93 |
图像5 | 96.16 | 15.43 | 96.23 | 12.83 | 96.33 | 14.51 | 98.31 | 6.37 |
图像6 | 93.88 | 27.44 | 95.18 | 19.87 | 95.53 | 12.09 | 98.65 | 2.41 |
图像7 | 94.16 | 53.36 | 95.48 | 43.14 | 96.50 | 30.57 | 98.54 | 6.97 |
图像8 | 92.99 | 32.40 | 95.76 | 9.01 | 95.96 | 8.33 | 97.52 | 4.22 |
图像9 | 96.66 | 16.28 | 96.86 | 13.23 | 97.16 | 11.32 | 97.25 | 5.79 |
图像10 | 94.89 | 30.76 | 96.64 | 15.92 | 96.56 | 15.96 | 98.02 | 6.22 |
平均值 | 93.08 | 27.80 | 95.21 | 17.88 | 95.91 | 16.00 | 98.21 | 4.97 |
[1] | VIGNESH T, THYAGHARAJAN K K. Water bodies identification from multispectral images using Gabor filter, FCM and canny edge detection methods[C]//Proceedings of 2017 International Conference on Information Communication and Embedded Systems (ICICES). Chennai: IEEE, 2017. |
[2] | 李占利, 刘宇琦, 孙瑜, 等. 基于卡尔曼滤波的SAR图像边缘检测方法[J]. 图学学报, 2019, 40(5): 823-828. |
LI Zhanli, LIU Yuqi, SUN Yu, et al. Edge detection for SAR images based on Kalman filter[J]. Journal of Graphics, 2019, 40(5): 823-828. | |
[3] | SGHAIER M O, FOUCHER S, LEPAGE R. River extraction from high-resolution SAR images combining a structural feature set and mathematical morphology[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(3): 1025-1038. |
[4] | 胡炎, 单子力, 高峰. 基于增强指数加权均值比的SAR图像边缘检测算法[J]. 电子与信息学报, 2018, 40(5): 1166-1172. |
HU Yan, SHAN Zili, GAO Feng. Edge detection algorithm for SAR image based on enhanced ROEWA[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1166-1172. | |
[5] | LUO Yuxiao, AN Daoxiang, WANG Wu, et al. Improved ROEWA SAR image edge detector based on curvilinear structures extraction[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4): 631-635. |
[6] | LIANG Jiayong, LIU Desheng. A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 53-62. |
[7] | 杨蕴, 李玉, 赵泉华. 斑点抑制与多分辨率拓扑分析相结合的SAR图像河流水体提取[J]. 测绘学报, 2022, 51(1): 145-158. DOI: 10.11947/j.AGCS.2022.20190395. |
YANG Yun, LI Yu, ZHAO Quanhua. River waterbody extraction from SAR images based on speckle reduction and multi-resolution topological analysis[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 145-158. DOI: 10.11947/j.AGCS.2022.20190395. | |
[8] | WANG Wenguang, WANG Jun, ZHAO Hui, et al. River detection from SAR images[C]//Proceedings the 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Singapore: IEEE, 2015: 680-683. |
[9] | GENG Jie, WANG Hongyu, FAN Jianchao, et al. Change detection of SAR images based on supervised contractive autoencoders and fuzzy clustering[C]//Proceedings of 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP). Shanghai: IEEE, 2017. |
[10] | SHANG Ronghua, CHEN Chen, WANG Guangguang, et al. A thumbnail-based hierarchical fuzzy clustering algorithm for SAR image segmentation[J]. Signal Processing, 2020, 171: 107518. |
[11] | CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours[C]//Proceedings of 1995 IEEE International Conference on Computer Vision. Cambridge: IEEE, 1995: 694-699. |
[12] | 方莉娜, 卢丽靖, 赵志远, 等. 车载激光点云道路边界提取的Snake方法[J]. 测绘学报, 2020, 49(11): 1438-1450. DOI: 10.11947/j.AGCS.2020.20190370. |
FANG Lina, LU Lijing, ZHAO Zhiyuan, et al. Road boundaries extraction from mobile laser scanning point clouds based on discrete point Snake[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11): 1438-1450. DOI: 10.11947/j.AGCS.2020.20190370. | |
[13] | LÜ Hongli, ZHANG Yilin, WANG Renfang. Active contour model based on local absolute difference energy and fractional-order penalty term[J]. Applied Mathematical Modelling, 2022, 107: 207-232. |
[14] | CHAN T F, VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277. |
[15] | LIU Huaxiang, FANG Jiangxiong, ZHANG Zijian, et al. A novel active contour model guided by global and local signed energy-based pressure force[J]. IEEE Access, 2020, 8: 59412-59426. |
[16] | FANG Jiangxiong, LIU Huaxiang, LIU Jun, et al. Fuzzy region-based active contour driven by global and local fitting energy for image segmentation[J]. Applied Soft Computing, 2021, 100: 106982. |
[17] | SONG Yu, WU Yiquan, DAI Yimian. A new active contour remote sensing river image segmentation algorithm inspired from the cross entropy[J]. Digital Signal Processing, 2016, 48: 322-332. |
[18] | HAN Bin, WU Yiquan. A novel active contour model based on modified symmetric cross entropy for remote sensing river image segmentation[J]. Pattern Recognition, 2017, 67: 396-409. |
[19] | 韩斌, 吴一全. SAR图像河流提取的主动轮廓模型的稳健估计算法[J]. 测绘学报, 2020, 49(6): 777-786. DOI: 10.11947/j.AGCS.2020.20180423. |
HAN Bin, WU Yiquan. Robust estimation algorithm of active contour model for river extraction in SAR images[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 777-786. DOI: 10.11947/j.AGCS.2020.20180423. | |
[20] | SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2017 IEEE Transactions on Pattern Analysis and Machine Intelligence. [S.l.]: IEEE, 2017: 640-651. |
[21] | XU Chuan, ZHANG Shanshan, ZHAO Bofei, et al. SAR image water extraction using the attention U-net and multi-scale level set method: flood monitoring in South China in 2020 as a test case[J]. Geo-spatial Information Science, 2022, 25(2): 155-168. |
[22] | SHAMSOLMOALI P, ZAREAPOOR M, WANG Ruili, et al. A novel deep structure U-net for sea-land segmentation in remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9): 3219-3232. |
[23] | HOLZMANN M, DAVARI A, SEEHAUS T, et al. Glacier calving front segmentation using attention U-net[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE, 2021: 3483-3486. |
[24] | REN Yibin, LI Xiaofeng, YANG Xiaofeng, et al. Development of a dual-attention U-net model for sea ice and open water classification on SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4010205. |
[25] | OH J, MARTIN D R, HU Xiaoping. Partitioned edge-function-scaled region-based active contour (p-ESRAC): automated liver segmentation in multiphase contrast-enhanced MRI[J]. Medical Physics, 2014, 41(4): 041914. |
[26] | LI Chunming, XU Chenyang, GUI Changfeng, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2010, 19(12): 3243-3254. |
[1] | XIANG Deliang, DING Huaiyue, GUAN Dongdong, CHENG Jianda, SUN Xiaokun. PolSAR image registration combining polarization whitening filtering and SimSD-CapsuleNet [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 450-462. |
[2] | LI Xin, JIANG Boyang, WANG Taoyang, ZHANG Guo, CUI Hao, CHENG Qian. Geometric positioning accuracy improvement method without ground control points for global orthorectification of GF-3 [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1929-1940. |
[3] | LUO Qingli, CUI Fengzhi, WEI Jujie, MING Lei. Foreground feature manifold ranking method for SAR image change detection [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2365-2378. |
[4] | YANG Yun, LI Yu, ZHAO Quanhua. River waterbody extraction from SAR images based on speckle reduction and multi-resolution topological analysis [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 145-158. |
[5] | FAN Zhongli, ZHANG Li, WANG Qingdong, LIU Siting, YE Yuanxin. A fast matching method of SAR and optical images using angular weighted orientated gradients [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1390-1403. |
[6] | HAN Bin, WU Yiquan. Robust estimation algorithm of active contour model for river extraction in SAR images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 777-786. |
[7] | DING Liujian, TAO Qiuxiang, LI Tao, CHEN Qianfu, CHEN Yang. A joint geometric calibration technique for GF-3 SAR image in wide area [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5): 598-610. |
[8] | LI Dongchen, XIANG Wenhao, DANG Qiannan, WU Yan. SAR and optical images registration using uniform distribution and structure description-based ASIFT [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1583-1590. |
[9] | FANG Lina, LU Lijing, ZHAO Zhiyuan, WANG Yunyun, CHEN Chongcheng. Road boundaries extraction from mobile laser scanning point clouds based on discrete point Snake [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11): 1438-1450. |
[10] | LÜ Guannan, TANG Xinming, AI Bo, LI Tao, CHEN Qianfu. Hybrid Geometric Calibration Method for Multi-platform Spaceborne SAR Image with Sparse GCPs [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 986-995. |
[11] | WANG Jianming, SHI Wenzhong, SHAO Pan. Change-detection Method for SAR Image Using Adaptive Distance and Fuzzy Topology Optimization-based Fuzzy Clustering [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5): 611-619. |
[12] | WANG Dailiang, LI Yu, LIN Wenjie, ZHAO Quanhua. Edge Extraction Algorithm of SAR Image Using Random Direction Symmetric Difference Kernel [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1165-1173. |
[13] | HAN Bin, WU Yiquan. Weighted Exponential Region Energy Model for River Segmentation of SAR Images [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1174-1181. |
[14] | JIANG Dawei, FAN Jianchao, HUANG Fengrong. SAR Image Coastline Detection Based on Regional Distance Regularized Geometric Active Contour Models [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9): 1096-1103. |
[15] | CHEN Min, ZHU Qing, ZHU Jun, XU Zhu, HUANG Lanxin. Feature Matching for SAR and Optical Images Based on Gaussian-Gamma-shaped Edge Strength Map [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 318-325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||