Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (8): 1586-1597.doi: 10.11947/j.AGCS.2024.20230118
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
Xin YAN1,2(), Li SHEN1,2(), Junjie PAN1,2, Yanshuai DAI1,2, Jicheng WANG3, Xiaoli ZHENG4, Zhi-lin LI1,2
Received:
2023-04-20
Published:
2024-09-25
Contact:
Li SHEN
E-mail:yxecho.swjtu@gmail.com;yxecho.swjtu@gmail.com;lishen@swjtu.edu.cn
About author:
YAN Xin (1995—), male, PhD candidate, majors in remote sensing image information extraction. E-mail: yxecho.swjtu@gmail.com
Supported by:
CLC Number:
Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597.
Tab.2
CAM performance of different methods under both datasets"
方法 | LEVIR数据集 | WHU数据集 | ||||||
---|---|---|---|---|---|---|---|---|
P | R | F1值 | IOU | P | R | F1值 | IOU | |
WILDCAT | 31.97 | 71.03 | 44.10 | 28.28 | 54.42 | 69.63 | 61.09 | 43.98 |
SEAM | 56.89 | 74.11 | 64.37 | 47.46 | 78.40 | 73.84 | 76.05 | 61.36 |
WSF-Net | 51.51 | 79.38 | 62.48 | 44.65 | 67.54 | 81.25 | 73.76 | 58.43 |
MSG-SR-Net | 59.28 | 77.33 | 67.11 | 50.50 | 76.62 | 77.99 | 77.30 | 62.99 |
本文方法 | 69.91 | 72.35 | 71.11 | 55.17 | 82.91 | 79.37 | 81.10 | 68.21 |
Tab.3
Change detection performance of different methods under datasets"
方法 | LEVIR数据集 | WHU数据集 | ||||||
---|---|---|---|---|---|---|---|---|
P | R | F1值 | IOU | P | R | F1值 | IOU | |
WILDCAT | 38.10 | 46.88 | 42.04 | 26.61 | 56.58 | 52.91 | 54.68 | 37.63 |
SEAM | 49.58 | 82.77 | 62.01 | 44.94 | 58.56 | 83.74 | 68.93 | 52.59 |
WSF-Net | 48.87 | 66.61 | 56.38 | 39.26 | 60.53 | 74.86 | 66.93 | 50.30 |
MSG-SR-Net | 52.14 | 83.98 | 64.34 | 47.42 | 64.60 | 79.10 | 71.12 | 55.18 |
本文方法 | 53.08 | 86.06 | 65.66 | 48.88 | 80.18 | 78.48 | 79.32 | 65.73 |
[1] | 胡明洪, 李佳田, 姚彦吉, 等. 结合多路径的高分辨率遥感影像建筑物提取SER-UNet算法[J]. 测绘学报, 2023, 52(5): 808-817. DOI: 10.11947/j.AGCS.2023.20210691. |
HU Minghong, LI Jiatian, YAO Yanji, et al. SER-UNet algorithm for building extraction from high-resolution remote sensing image combined with multipath[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 808-817. DOI: 10.11947/j.AGCS.2023.20210691. | |
[2] | 刘帅, 李笑迎, 于梦, 等. 高分辨率遥感图像双解耦语义分割网络模型[J]. 测绘学报, 2023, 52(4): 638-647. DOI: 10.11947/j.AGCS.2023.20210455. |
LIU Shuai, LI Xiaoying, YU Meng, et al. Dual decoupling semantic segmentation model for high-resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 638-647. DOI: 10.11947/j.AGCS.2023.20210455. | |
[3] | 乔文凡, 慎利, 戴延帅, 等. 联合膨胀卷积残差网络和金字塔池化表达的高分影像建筑物自动识别[J]. 地理与地理信息科学, 2018, 34(5): 56-62. |
QIAO Wenfan, SHEN Li, DAI Yanshuai, et al. Building extraction from high resolution remote sensing images by combining dilated convolutional residual networks and pyramid pooling representation[J]. Geography and Geo-Information Science, 2018, 34(5): 56-62. | |
[4] | 吴纹辉, 慎利, 董新丰, 等. 面向高分辨率遥感影像建筑物变化检测的边缘感知网络[J]. 地理与地理信息科学, 2021, 37(3): 21-28. |
WU Wenhui, SHEN Li, DONG Xinfeng, et al. Edge sensing network for building change detection in high resolution remote sensing images[J]. Geography and Geo-Information Science, 2021, 37(3): 21-28. | |
[5] | 吴纹辉, 雷添杰. 基于孪生网络和典型语义分割模型的遥感影像变化检测方法框架研究[J]. 国土资源信息化, 2021(2): 15-21. |
WU Wenhui, LEI Tianjie. A framework research of remote sensing image change detection method based on Siamese network and typical semantic segmentation models[J]. Land and Resources Informatization, 2021(2): 15-21. | |
[6] | LIU Yi, PANG Chao, ZHAN Zongqian, et al. Building change detection for remote sensing images using a dual-task constrained deep Siamese convolutional network model[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5): 811-815. |
[7] | 叶沅鑫, 孙苗苗, 周亮, 等. 面向建筑物变化检测的主体边缘分解与重组神经网络[J]. 测绘学报, 2023, 52(1): 71-81. DOI: 10.11947/j.AGCS.2023.20210350. |
YE Yuanxin, SUN Miaomiao, ZHOU Liang, et al. Main body, edge decomposition and reorganization network for building change detection[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 71-81. DOI: 10.11947/j.AGCS.2023.20210350. | |
[8] | 张志强, 张新长, 辛秦川, 等. 结合像元级和目标级的高分辨率遥感影像建筑物变化检测[J]. 测绘学报, 2018, 47(1): 102-112. DOI: 10.11947/j.AGCS.2018.20170483. |
ZHANG Zhiqiang, ZHANG Xinchang, XIN Qinchuan, et al. Combining the pixel-based and object-based methods for building change detection using high-resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1): 102-112. DOI: 10.11947/j.AGCS.2018.20170483. | |
[9] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of 2015 International Conference on Medical Image Computing and Computer-assisted intervention. Cham: Springer, 2015: 234-241. |
[10] | CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of 2018 European Conference on Computer Vision. Cham: Springer, 2018: 833-851. |
[11] | JIANG Huiwei, HU Xiangyun, LI Kun, et al. PGA-SiamNet: pyramid feature-based attention-guided Siamese network for remote sensing orthoimagery building change detection[J]. Remote Sensing, 2020, 12(3): 484. |
[12] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 618-626. |
[13] | MCEVER R A, MANJUNATH B S. PCAMs: weakly supervised semantic segmentation using point supervision[EB/OL]. [2023-02-02]. http://arxiv.org/abs/2007.05615. |
[14] | LEE J, YI Jihun, SHIN C, et al. BBAM: bounding box attribution map for weakly supervised semantic and instance segmentation[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 2643-2651. |
[15] | ARASLANOV N, ROTH S. Single-stage semantic segmentation from image labels[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. |
[16] | WANG Yude, ZHANG Jie, KAN Meina, et al. Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 12272-12281. |
[17] | AHN J, CHO S, KWAK S. Weakly supervised learning of instance segmentation with inter-pixel relations[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2204-2213. |
[18] | 李鑫伟, 李彦胜, 张永军. 弱监督深度语义分割网络的多源遥感影像水体检测[J]. 中国图象图形学报, 2021, 26(12): 3015-3026. |
LI Xinwei, LI Yansheng, ZHANG Yongjun. Weakly supervised deep semantic segmentation network for water body extraction based on multi-source remote sensing imagery[J]. Journal of Image and Graphics, 2021, 26(12): 3015-3026. | |
[19] | YAN Xin, SHEN Li, WANG Jicheng, et al. MSG-SR-Net: a weakly supervised network integrating multiscale generation and superpixel refinement for building extraction from high-resolution remotely sensed imageries[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1012-1023. |
[20] | CHEN Jie, HE Fen, ZHANG Yi, et al. SPMF-Net: weakly supervised building segmentation by combining superpixel pooling and multi-scale feature fusion[J]. Remote Sensing, 2020, 12(6): 1049. |
[21] | LI Zhenshi, ZHANG Xueliang, XIAO Pengfeng, et al. On the effectiveness of weakly supervised semantic segmentation for building extraction from high-resolution remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3266-3281. |
[22] | WEI Yao, JI Shunping. Scribble-based weakly supervised deep learning for road surface extraction from remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5602312. |
[23] | LIAN Renbao, HUANG Liqin. Weakly supervised road segmentation in high-resolution remote sensing images using point annotations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4501013. |
[24] | LU Ming, FANG Leyuan, LI Muxing, et al. NFANet: a novel method for weakly supervised water extraction from high-resolution remote-sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5617114. |
[25] | FU Kun, LU Wanxuan, DIAO Wenhui, et al. WSF-NET: weakly supervised feature-fusion network for binary segmentation in remote sensing image[J]. Remote Sensing, 2018, 10(12): 1970. |
[26] | KHAN S, HE Xuming, PORIKLI F, et al. Learning deep structured network for weakly supervised change detection[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne: International Joint Conferences on Artificial Intelligence Organization, 2017: 2008-2015. |
[27] | ANDERMATT P, TIMOFTE R. A weakly supervised convolutional network for change segmentation and classification[C]//Proceedings of the 15th Asian Conference on Computer Vision. Cham: Springer, 2020: 103-119. |
[28] | KALITA I, KARATSIOLIS S, KAMILARIS A. Land use change detection using deep siamese neural networks and weakly supervised learning[C]//Proceedings of the 19th International Conference. Cham: Springer, 2021: 24-35. |
[29] | WU Chen, DU Bo, ZHANG Liangpei. Fully convolutional change detection framework with generative adversarial network for unsupervised, weakly supervised and regional supervised change detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9774-9788. |
[30] | HUANG Rui, WANG Ruofei, GUO Qing, et al. Background-mixed augmentation for weakly supervised change detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(7): 7919-7927. |
[31] | 王超, 王帅, 陈晓, 等. 联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测[J]. 测绘学报, 2023, 52(2): 283-296. DOI: 10.11947/j.AGCS.2023.20220202. |
WANG Chao, WANG Shuai, CHEN Xiao, et al. Object-level change detection of multi-sensor optical remote sensing images combined with UNet++and multi-level difference module[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 283-296. DOI: 10.11947/j.AGCS.2023.20220202. | |
[32] | JI Shunping, WEI Shiqing, LU Meng. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 574-586. |
[33] | CHEN Hao, SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662. |
[34] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
[35] | DURAND T, MORDAN T, THOME N, et al. WILDCAT: weakly supervised learning of deep ConvNets for image classification, pointwise localization and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5957-5966. |
[36] | FAN Junsong, ZHANG Zhaoxiang, TAN Tieniu. Employing multi-estimations for weakly-supervised semantic segmentation[C]//Proceedings 2020 of ECCV. Cham: Springer, 2020: 332-348. |
[1] | Yan SHI, Da WANG, Min DENG, Xuexi YANG. Spatio-temporal anomaly detection: connotation transformation and implementation path from data-driven to knowledge-driven modeling [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1493-1504. |
[2] | Tao XU, Yuanwei YANG, Xianjun GAO, Zhiwei WANG, Yue PAN, Shaohua LI, Lei XU, Yanjun WANG, Bo LIU, Jing YU, Fengmin WU, Haoyu SUN. Integrated graph convolution and multi-scale features for the overhead catenary system point cloud semantic segmentation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1624-1633. |
[3] | Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335. |
[4] | Liming JIANG, Yi SHAO, Zhiwei ZHOU, Peifeng MA, Teng WANG. A review of intelligent InSAR data processing: recent advancements, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1037-1056. |
[5] | Chi GUO, Yang LIU, Yarong LUO, Jingnan LIU, Quan ZHANG. Research progress in the application of image semantic information in visual SLAM [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1057-1076. |
[6] | Xunqiang GONG, Hongyu WANG, Tieding LU, Wei YOU. A general progressive decomposition long-term prediction network model for high-speed railway bridge pier settlement [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1113-1127. |
[7] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
[8] | Jicheng WANG, Anmei GUO, Li SHEN, Tian LAN, Zhu XU, Zhilin LI. Multi-level contrastive learning for weakly supervised extraction of urban solid wastes dump from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1212-1223. |
[9] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
[10] | Huimin LIU, Chenwei ZHANG, Kaiqi CHEN, Min DENG, Chong PENG. Deep learning-based spatio-temporal prediction and uncertainty assessment of urban PM2.5 distribution [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 750-760. |
[11] | SUN Chuanmeng, WEI Yu, LI Xinyu, MA Tiehua, WU Zhibo. Intelligent detection method of image water level inversion for water level without water scale in complex scenes [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 558-568. |
[12] | LIAO Zhaohong, ZHANG Yichen, YANG Biao, LIN Mingchun, SUN Wenbo, GAO Zhi. Monocular height estimation method of remote sensing image based on Swin Transformer-CNN and its application in highway road construction sites [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 344-352. |
[13] | LIN Yunhao, WANG Yanjun, LI Shaochun, CAI Hengfan. A coupled DeepLab and Transformer approach for fine classification of crop cultivation types in remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 353-366. |
[14] | JIANG Baode, HANG Wei, XU Shaofen, WU Yong. Multi-scale building instance refinement extraction from remote sensing images by fusing with decentralized adaptive attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1504-1514. |
[15] | CAO Xingwen, ZHENG Hongwei, LIU Ying, WU Mengquan, WANG Lingyue, BAO Anming, CHEN Xi. Multi-pedestrian trajectory prediction method based on multi-view 3D simulation video learning [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1595-1608. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||