Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (12): 2404-2415.doi: 10.11947/j.AGCS.2024.20230373
• Photogrammetry and Remote Sensing • Previous Articles
Quanyi ZHAO1(), Fujian ZHENG1, Bo XIA1, Zhengying LI2, Hong HUANG1(
)
Received:
2023-09-07
Published:
2025-01-06
Contact:
Hong HUANG
E-mail:202308021092T@stu.cqu.edu.cn;hhuang@cqu.edu.cn
About author:
ZHAO Quanyi (2002—), male, master, majors in remote sensing image intelligent interpretation. E-mail: 202308021092T@stu.cqu.edu.cn
Supported by:
CLC Number:
Quanyi ZHAO, Fujian ZHENG, Bo XIA, Zhengying LI, Hong HUANG. Hyperspectral remote sensing image scene classification method based on deep manifold distillation network[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2404-2415.
Tab. 2
Parameter sensitivity experiments"
α | 总体精度/(%) | T | 总体精度/(%) | β | 总体精度/(%) | |||
---|---|---|---|---|---|---|---|---|
OHID-SC数据集 | NaSC-TG2数据集 | OHID-SC数据集 | NaSC-TG2数据集 | OHID-SC数据集 | NaSC-TG2数据集 | |||
0.1 | 92.78 | 93.36 | 1 | 92.34 | 93.46 | 0.1 | 92.29 | 93.78 |
0.2 | 92.51 | 94.44 | 2 | 92.23 | 94.27 | 0.2 | 92.89 | 94.30 |
0.5 | 92.29 | 94.19 | 5 | 92.61 | 94.26 | 0.5 | 93.11 | 94.55 |
0.8 | 92.83 | 94.48 | 10 | 93.00 | 94.55 | 0.8 | 93.60 | 91.20 |
1.0 | 93.11 | 94.20 | 20 | 92.67 | 94.29 | 1.0 | 92.56 | 92.60 |
1.25 | 92.61 | 94.41 | 30 | 92.56 | 94.39 | 1.25 | 93.22 | 82.70 |
2.0 | 91.74 | 94.28 | 40 | 93.11 | 94.27 | 2.0 | 92.29 | 92.90 |
5.0 | 91.96 | 92.66 | 50 | 92.56 | 94.26 | 5.0 | 92.94 | 90.80 |
10.0 | 88.89 | 88.53 | 100 | 92.67 | 94.02 | 10.0 | 92.23 | 68.80 |
Tab. 3
Results of comparison algorithm"
算法 | 出版年份 | 总体精度/(%) | |
---|---|---|---|
OHID-SC数据集 | NaSC-TG2数据集 | ||
VGG-16 | 2014 | 80.58 | 87.40 |
ResNet-101 | 2015 | 92.29 | 86.18 |
GoogLeNet | 2014 | 88.07 | 86.31 |
ConvNeXt | 2022 | 90.59 | 85.73 |
RegNet | 2020 | 90.86 | 80.93 |
ViT | 2020 | 85.18 | 91.83 |
DeiT | 2020 | 83.81 | 90.81 |
CaiT | 2021 | 83.10 | 88.61 |
VGG-16+SAFF[ | 2020 | 72.11 | 74.67 |
MBLANet[ | 2021 | 91.50 | 93.78 |
LDGLKD[ | 2023 | 91.62 | 87.47 |
HSCMDNet | 2023 | 93.60 | 94.55 |
Tab. 4
Test time and complexity of comparison algorithm"
算法 | 测试时间/s | 参数量/MB | FLOPs/GB | |
---|---|---|---|---|
OHID-SC数据集 | NaSC-TG2数据集 | |||
VGG-16 | 9.43 | 159.98 | 131.95 | 5.13 |
ResNet-101 | 9.01 | 141.20 | 40.55 | 2.57 |
GoogLeNet | 8.31 | 144.63 | 9.50 | 0.49 |
ConvNeXt | 6.98 | 137.58 | 83.52 | 5.02 |
RegNet | 7.40 | 139.12 | 35.93 | 2.63 |
ViT | 8.33 | 143.19 | 84.17 | 5.70 |
DeiT | 9.27 | 158.77 | 83.80 | 5.70 |
CaiT | 7.69 | 144.31 | 46.41 | 2.86 |
VGG-16+SAFF[ | 31.56 | 208.21 | — | — |
MBLANet[ | 8.54 | 141.52 | 22.43 | 5.26 |
LDGLKD[ | 8.49 | 145.18 | 14.04 | 5.01 |
HSCMDNet | 6.67 | 132.59 | 10.70 | 0.74 |
[1] |
余东行, 徐青, 赵传, 等. 注意力引导特征融合与联合学习的遥感图像场景分类[J]. 测绘学报, 2023, 52(4): 624-637. DOI:.
doi: 10.11947/j.AGCS.2023.20210659 |
YU Donghang, XU Qing, ZHAO Chuan, et al. Attention-guided feature fusion and joint learning for remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 624-637. DOI:.
doi: 10.11947/j.AGCS.2023.20210659 |
|
[2] | 夏英, 李骏垚, 郭东恩. 基于GAN的半监督遥感图像场景分类[J]. 光子学报, 2022, 51(3): 28-39. |
XIA Ying, LI Junyao, GUO Dongen. Semi-supervised scene classification of remote sensing images based on GAN[J]. Acta Photonica Sinica, 2022, 51(3): 28-39. | |
[3] | 马欣悦, 王梨名, 祁昆仑, 等. 基于多尺度循环注意力网络的遥感图像场景分类方法[J]. 地球科学, 2021, 46(10): 3740-3752. |
MA Xinyue, WANG Liming, QI Kunlun, et al. Remote sensing image scene classification method based on multi-scale cyclic attention network[J]. Earth Science, 2021, 46(10): 3740-3752. | |
[4] | DOS SANTOS J, PENATTI O, TORRES R. Evaluating the potential of texture and color descriptors for remote sensing image retrieval and classification[C]//Proceedings of 2010 IEEE International Conference on Computer Vision Theory and Applications. Angers: IEEE, 2010, 2: 203-208. |
[5] | CHEN Chen, ZHANG Baochang, SU Hongjun, et al. Land-use scene classification using multi-scale completed local binary patterns[J]. Signal, Image and Video Processing, 2016, 10(4): 745-752. |
[6] | 黄鸿, 徐科杰, 石光耀. 联合多尺度多特征的高分遥感图像场景分类[J]. 电子学报, 2020, 48(9): 1824-1833. |
HUANG Hong, XU Kejie, SHI Guangyao. Scene classification of high-resolution remote sensing image by multi-scale and multi-feature fusion[J]. Acta Electronica Sinica, 2020, 48(9): 1824-1833. | |
[7] | TONG Xinyi, XIA Guisong, LU Qikai, et al. Land-cover classification with high-resolution remote sensing images using transferable deep models[J]. Remote Sensing of Environment, 2020, 237: 111322. |
[8] | HE Hao, WANG Shuyang, WANG Shicheng, et al. A road extraction method for remote sensing image based on encoder decoder network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 16-25. |
[9] | DAI Yuchao, ZHANG Jing, HE Mingyi, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 101-110. |
[10] | SHI Jiacheng, LIU Wei, SHAN Haoyu, et al. Remote sensing scene classification based on multibranch fusion attention network[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3262407. |
[11] | JIN Jianhui, ZHOU Wujie, YE Lü, et al. DASFNet: dense-attention-similarity-fusion network for scene classification of dual-modal remote-sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 115: 103087. |
[12] | GUO Haonan, SHI Qian, DU Bo, et al. Scene-driven multitask parallel attention network for building extraction in high-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4287-4306. |
[13] | WANG Di, LAN Jinhui. A deformable convolutional neural network with spatial-channel attention for remote sensing scene classification[J]. Remote Sensing, 2021, 13(24): 5076. |
[14] |
施慧慧, 徐雁南, 滕文秀, 等. 高分辨率遥感影像深度迁移可变形卷积的场景分类法[J]. 测绘学报, 2021, 50(5): 652-663. DOI:.
doi: 10.11947/j.AGCS.2021.20200190 |
SHI Huihui, XU Yannan, TENG Wenxiu, et al. Scene classification of high-resolution remote sensing imagery based on deep transfer deformable convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 652-663. DOI:.
doi: 10.11947/j.AGCS.2021.20200190 |
|
[15] |
郑卓, 方芳, 刘袁缘, 等. 高分辨率遥感影像场景的多尺度神经网络分类法[J]. 测绘学报, 2018, 47(5): 620-630. DOI:.
doi: 10.11947/j.AGCS.2018.20170191 |
ZHENG Zhuo, FANG Fang, LIU Yuanyuan, et al. Joint multi-scale convolution neural network for scene classification of high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5): 620-630. DOI:.
doi: 10.11947/j.AGCS.2018.20170191 |
|
[16] | WAN Huiyao, CHEN Jie, HUANG Zhixiang, et al. Lightweight channel attention and multiscale feature fusion discrimination for remote sensing scene classification[J]. IEEE Access, 2021, 9: 94586-94600. |
[17] | ZHANG Shichao, WANG Changying, LI Jinhua, et al. MF-Dfnet: a deep learning method for pixel-wise classification of very high-resolution remote sensing images[J]. International Journal of Remote Sensing, 2022, 43(1): 330-348. |
[18] | WANG Kexian, ZHENG Shunyi, LI Rui, et al. A deep double-channel dense network for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62. |
[19] | 刘康, 周壮, 李盛阳, 等. 天宫一号高光谱遥感场景分类数据集及应用[J]. 遥感学报, 2020, 24(9): 1077-1087. |
LIU Kang, ZHOU Zhuang, LI Shengyang, et al. Scene classification dataset using the Tiangong-1 hyperspectral remote sensing imagery and its applications[J]. Journal of Remote Sensing, 2020, 24(9): 1077-1087. | |
[20] | ZHOU Zhuang, LI Shengyang, WU Wei, et al. NaSC-TG2: natural scene classification with Tiangong-2 remotely sensed imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3228-3242. |
[21] | 徐科杰, 邓培芳, 黄鸿. HSRS-SC:面向遥感场景分类的高光谱图像数据集[J]. 中国图象图形学报, 2021, 26(8): 1809-1822. |
XU Kejie, DENG Peifang, HUANG Hong. HSRS-SC: a hyperspectral image dataset for remote sensing scene classification[J]. Journal of Image and Graphics, 2021, 26(8): 1809-1822. | |
[22] | SINGH A, BRUZZONE L. WIANet: a wavelet-inspired attention-based convolution neural network for land cover classification[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5. |
[23] | XU Kejie, HUANG Hong, DENG Peifang. Attention-based deep feature learning network for scene classification of hyperspectral images[C]//Proceedings of 2021 IEEE Asilomar Conference on Signals, Systems, and Computers. Pacific Grove: IEEE, 2021: 1690-1693. |
[24] | LIU Hao, QU Ying, ZHANG Liqiang. Multispectral scene classification via cross-modal knowledge distillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3174352. |
[25] | WANG Guoqing, ZHANG Ning, LIU Wenchao, et al. MFST: a multi-level fusion network for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3205417. |
[26] | ZHENG Fujian, LIN Shuai, ZHOU Wei, et al. A lightweight dual-branch swin transformer for remote sensing scene classification[J]. Remote Sensing, 2023, 15(11): 2865. |
[27] | HAO Siyuan, LI Nan, YE Yuanxin. Inductive biased swin-transformer with cyclic regressor for remote sensing scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 6265-6278. |
[28] | ZHANG Zizhao, ZHANG Han, ZHAO Long, et al. Nested hierarchical transformer: towards accurate, data-efficient and interpretable visual understanding[C]//Proceedings of 2022 IEEE AAAI Conference on Artificial Intelligence. Virtual Event: IEEE, 2022, 36(3): 3417-3425. |
[29] | XU Kejie, DENG Peifang, HUANG Hong. Vision transformer: an excellent teacher for guiding small networks in remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3152566. |
[30] | LIU Ze, LIN Yutong, CAO Yue, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Virtual Event: IEEE, 2021: 10012-10022. |
[31] | HE Kaiming, ZHANG Xianyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
[32] | TAO Zeyi, XIA Qi, LI Qun. Neuron manifold distillation for edge deep learning[C]//Proceedings of 2021 International Symposium on Quality of Service. Tokyo: IEEE, 2021: 1-10. |
[33] | 刘英旭, 蒲春宇, 许典坤, 等. 面向高光谱影像场景分类的轻量化深度全局-局部知识蒸馏网络[J]. 光学精密工程, 2023, 31(17): 2598-2610. |
LIU Yingxu, PU Chunyu, XU Diankun, et al. Lightweight deep global-local knowledge distillation network for hyperspectral image scene classification[J]. Optics and Precision Engineering, 2023, 31(17): 2598-2610. | |
[34] | CAO Ran, FANG Leyuan, LU Ting, et al. Self-attention-based deep feature fusion for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1): 43-47. |
[35] | CHEN Sibao, WEI Qingsong, WANG Wenzhong, et al. Remote sensing scene classification via multi-branch local attention network[J]. IEEE Transactions on Image Processing, 2022, 31: 99-109. |
[36] | YAO Dazhi, SHAO Yunxue. A data efficient transformer based on Swin Transformer[J]. The Visual Computer, 2024, 40(4): 2589-2598. |
[1] | Qihao HUANG, Guowang JIN, Xin XIONG, Limei WANG, Jiahao LI. Lightweight SAR target detection based on channel pruning and know-ledge distillation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 712-723. |
[2] | Shiyan PANG, Jingjing HAO, Zhiqi ZUO, Jingjing LAN, Xiangyun HU. A high-resolution remote sensing images change detection method via the integration of dense connections and self-attention mechanisms [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2244-2253. |
[3] | Huafei YU, Tianqi QIU, Zhe ZHOU, Chongya GONG, Tianyuan XIAO, Min YANG, Tinghua AI. Drainage pattern recognition supported by graph Transformer [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2075-2085. |
[4] | ZHANG Yichao, ZHENG Xiangtao, LU Xiaoqiang. Hyperspectral image classification method based on hierarchical transformer network [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1139-1147. |
[5] | WU Chenhao, XIANG Longgang, ZHANG Yeting, WU Huayi. Geography-aware representation learning for trajectory similarity computation [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 670-678. |
[6] | WANG Wei, DENG Jiwei, WANG Xin, LI Zhiyong, YUAN Ping. GLFFNet model for remote sensing image scene classification [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1693-1702. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 99
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||