Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (12): 2391-2403.doi: 10.11947/j.AGCS.2024.20230579
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
Received:2024-01-04
Online:2025-01-06
Published:2025-01-06
Contact:
Shunping JI
E-mail:liujinwhu@whu.edu.cn;jishunping@whu.edu.cn
About author:LIU Jin (1996—), female, PhD, majors in multi-view stereo, dense image matching and 3D reconstruction. E-mail: liujinwhu@whu.edu.cn
Supported by:CLC Number:
Jin LIU, Shunping JI. Deep learning based multi-view dense matching with joint depth and surface normal estimation[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2391-2403.
Tab. 2
The accuracy of surface normal estimation by four methods on the WHU-OMVS patch-size test set"
| 方法 | mean/(°)↓ | median/(°)↓ | PAG-N10°/(%)↑ | PAG-N20°/(%)↑ | PAG-N30°/(%)↑ |
|---|---|---|---|---|---|
| COLMAP | 20.06 | 11.54 | 46.27 | 68.41 | 79.28 |
| NAS | 16.84 | 14.20 | 30.03 | 70.29 | 88.61 |
| Cas-MVSNet(D2N) | 11.86 | 7.88 | 61.91 | 85.69 | 93.03 |
| DN-MVS(本文方法) | 8.23 | 5.70 | 72.20 | 91.86 | 97.19 |
Tab. 3
Evaluation of DSM results reconstructed by four solutions on the WHU-OMVS test set"
| 方法 | 边缘区域 | 非边缘区域 | 完整区域 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| PAG-S0.2 m/(%)↑ | PAG-S0.4 m/(%)↑ | PAG-S0.6 m/(%)↑ | PAG-S0.05 m/(%)↑ | PAG-S0.1 m/(%)↑ | PAG-S0.2 m/(%)↑ | PAG-S0.2 m/(%)↑ | PAG-S0.4 m/(%)↑ | PAG-S0.6 m/(%)↑ | |
| COLMAP | 50.08 | 71.55 | 78.01 | 47.70 | 65.80 | 82.74 | 80.32 | 92.38 | 95.67 |
| Open MVS | 61.96 | 78.37 | 83.35 | 42.66 | 64.71 | 84.94 | 83.24 | 94.07 | 96.53 |
| Cas-MVSNet | 50.61 | 71.30 | 81.27 | 44.68 | 69.90 | 87.57 | 84.84 | 94.40 | 97.02 |
| DN-MVS | 61.05 | 79.20 | 84.99 | 50.99 | 73.23 | 88.81 | 86.76 | 95.11 | 97.11 |
| (本文方法) | (+10.44) | (+7.90) | (+3.72) | (+6.31) | (+3.33) | (+1.24) | (+1.92) | (+0.71) | (+0.09) |
Tab. 4
Evaluation of 3D point cloud results in the Tianjin test area"
| 方法 | 平均距离/m↓ | 百分比(阈值<0.2 m)/(%)↑ | 百分比(阈值<0.4 m/(%))↑ | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Acc. | Comp. | overall | Acc. | Comp. | F1值 | Acc. | Comp. | F1值 | |
| COLMAP | 0.509 | 0.367 | 0.438 | 46.14 | 62.91 | 53.24 | 66.10 | 81.96 | 73.18 |
| Open MVS | 0.410 | 0.306 | 0.358 | 47.57 | 72.97 | 57.59 | 75.03 | 84.61 | 79.53 |
| Cas-MVSNet | 0.410 | 0.256 | 0.333 | 51.41 | 80.13 | 62.63 | 74.82 | 87.10 | 80.49 |
| DN-MVS | 0.404 | 0.237 | 0.320 | 51.51 | 81.53 | 63.13 | 75.28 | 87.86 | 81.14 |
Tab. 6
The effect of the components and the weighting parameters of each stage in the loss function"
| 损失项设置 | 深度推理 | 法线推理 | ||||
|---|---|---|---|---|---|---|
| MAE/m↓ | PAG-D0.3 m/(%)↑ | PAG-D0.6 m/(%)↑ | mean/(°)↓ | PAG-N20°/(%)↑ | PAG-N30°/(%)↑ | |
移除 和![]() | 0.143 | 91.92 | 97.34 | 8.67 | 90.91 | 96.78 |
移除![]() | 0.140 | 92.83 | 97.66 | 8.42 | 90.36 | 96.99 |
移除![]() | 0.134 | 92.97 | 97.79 | 8.26 | 91.17 | 96.89 |
| α1∶α2∶β=1∶1∶1 | 0.135 | 92.73 | 97.74 | 8.38 | 91.40 | 97.02 |
| λ1∶λ2∶λ3=1∶1∶1 | 0.135 | 92.95 | 97.69 | 8.43 | 91.44 | 96.95 |
| 本文方法 | 0.132 | 93.09 | 97.81 | 8.23 | 91.86 | 97.19 |
| [1] | 董秀军, 邓博, 袁飞云, 等. 航空遥感在地质灾害领域的应用:现状与展望[J]. 武汉大学学报(信息科学版), 2023, 48(12): 1897-1913. |
| DONG Xiujun, DENG Bo, YUAN Feiyun, et al. Application of aerial remote sensing in geological hazards: current situation and prospects[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1897-1913. | |
| [2] | 沙洪俊, 袁修孝. 双目影像密集匹配方法的回顾与展望[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1813-1833. |
| SHA Hongjun, YUAN Xiuxiao. State-of-the-art binocular image dense matching method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1813-1833. | |
| [3] | HONG Danfeng, ZHANG Bing, LI Hao, et al. Cross-city matters: a multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks[J]. Remote Sensing of Environment, 2023, 299: 113856. |
| [4] | HONG Danfeng, ZHANG Bing, LI Xuyang, et al. SpectralGPT: spectral remote sensing foundation model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(8): 5227-5244. |
| [5] | KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 4015-4026. |
| [6] | SUN Xian, WANG Peijin, LU Wanxuan, et al. RingMo: a remote sensing foundation model with masked image modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 3194732. |
| [7] |
刘瑾, 季顺平. 基于深度学习的航空遥感影像密集匹配[J]. 测绘学报, 2019, 48(9): 1141-1150. DOI:.
doi: 10.11947/j.AGCS.2019.20180247 |
|
LIU Jin, JI Shunping. Deep learning based dense matching for aerial remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1141-1150. DOI:.
doi: 10.11947/j.AGCS.2019.20180247 |
|
| [8] | JI Shunping, LIU Jin, LU Meng. CNN-based dense image matching for aerial remote sensing images[J]. Photogrammetric Engineering & Remote Sensing, 2019, 85(6): 415-424. |
| [9] | 季顺平, 罗冲, 刘瑾. 基于深度学习的立体影像密集匹配方法综述[J]. 武汉大学学报(信息科学版), 2021, 46(2): 193-202. |
| JI Shunping, LUO Chong, LIU Jin. A review of dense stereo image matching methods based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. | |
| [10] |
龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6): 693-704. DOI:.
doi: 10.11947/j.AGCS.2018.20170640 |
|
GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 693-704. DOI:.
doi: 10.11947/j.AGCS.2018.20170640 |
|
| [11] | LAGA H, JOSPIN L V, BOUSSAID F, et al. A survey on deep learning techniques for stereo-based depth estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1738-1764. |
| [12] | YAO Yao, LUO Zixin, LI Shiwei, et al. MVSNet: depth inference for unstructured multi-view stereo[C]//Proceedings of 2018 European Conference on Computer Vision. Munich: Springer, 2018: 767-783. |
| [13] | GU Xiaodong, FAN Zhiwen, ZHU Siyu, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2495-2504. |
| [14] | WEI Zizhuang, ZHU Qingtian, MIN Chen, et al. AA-RMVSNet: adaptive aggregation recurrent multi-view stereo network[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 6187-6196. |
| [15] | CHANG Jiaren, CHANG Peichun, CHEN Yongsheng. Attention-aware feature aggregation for real-time stereo matching on edge devices[C]//Proceedings of 2020 Asian Conference on Computer Vision. Kyoto: Springer, 2020: 365-380. |
| [16] | LIU Jin, JI Shunping. A novel recurrent encoder-decoder structure for large-scale multi-view stereo reconstruction from an open aerial dataset[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6050-6059. |
| [17] | YAN Jianfeng, WEI Zizhuang, YI Hongwei, et al. Dense hybrid recurrent multi-view stereo net with dynamic consistency checking[C]//Proceedings of 2020 European Conference on Computer Vision. Glasgow: Springer, 2020: 674-689. |
| [18] | YU Dawen, JI Shunping, LIU Jin, et al. Automatic 3D building reconstruction from multi-view aerial images with deep learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171: 155-170. |
| [19] | LIU Jin, GAO Jian, JI Shunping, et al. Deep learning based multi-view stereo matching and 3D scene reconstruction from oblique aerial images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 204: 42-60. |
| [20] | GAO Jian, LIU Jin, JI Shunping. Rational polynomial camera model warping for deep learning based satellite multi-view stereo matching[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 6128-6137. |
| [21] | GAO Jian, LIU Jin, JI Shunping. A general deep learning based framework for 3D reconstruction from multi-view stereo satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195: 446-461. |
| [22] | BLEYER M, RHEMANN C, ROTHER C. PatchMatch stereo-stereo matching with slanted support windows[C]//Proceedings of 2011 British Machine Vision Conference. Dundee: British Machine Vision Association, 2011: 1-11. |
| [23] | GALLIANI S, LASINGER K, SCHINDLER K. Massively parallel multiview stereopsis by surface normal diffusion[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 873-881. |
| [24] | SCHÖNBERGER J L, ZHENG Enliang, FRAHM J M, et al. Pixelwise view selection for unstructured multi-view stereo[C]//Proceedings of 2016 European Conference on Computer Vision. Amsterdam: Springer Cham, 2016: 501-518. |
| [25] | XU Qingshan, TAO Wenbing. Multi-scale geometric consistency guided multi-view stereo[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5478-5487. |
| [26] | LONG Xiaoxiao, LIU Lingjie, THEOBALT C, et al. Occlusion-aware depth estimation with adaptive normal constraints[C]//Proceedings of 2020 European Conference on Computer Vision. Glasgow: Springer, 2020: 640-657. |
| [27] | KUSUPATI U, CHENG Shuo, CHEN Rui, et al. Normal assisted stereo depth estimation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2186-2196. |
| [28] | ZHAO Wang, LIU Shaohui, WEI Yi, et al. A confidence-based iterative solver of depths and surface normals for deep multi-view stereo[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Visio. Montreal: IEEE, 2021: 6148-6157. |
| [29] | YANG Zhenheng, WANG Peng, XU Wei, et al. Unsupervised learning of geometry with edge-aware depth-normal consistency[EB/OL]. [2023-10-01]. https://arxiv.org/abs/1711.03665v1. |
| [30] | KNAPITSCH A, PARK J, ZHOU Qianyi, et al. Tanks and temples[J]. ACM Transactions on Graphics, 2017, 36(4): 1-13. |
| [31] | AANÆS H, JENSEN R R, VOGIATZIS G, et al. Large-scale data for multiple-view stereopsis[J]. International Journal of Computer Vision, 2016, 120(2): 153-168. |
| [1] | Shunping JI, Jin LIU, Jian GAO, Jianya GONG. An intelligent 3D reconstruction framework via deep learning based multi-view image matching [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1633-1646. |
| [2] | Jixian ZHANG, Haiyan GU, Huan NI, Haitao LI, Yi YANG, Shaopeng DING, Songman SUI. Deep learning methods for remote sensing intelligent change detection: evolution and development [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1347-1370. |
| [3] | Shuai FANG, Jiaen LIU, Jing ZHANG. Spatio-temporal fusion algorithm based on adaptive reference feature incorporation and multi-scale feature aggregation [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1476-1488. |
| [4] | Nina MENG, Fengmei LI, Xiaodong ZHOU. Data and cognition dual-driven building group generalization results and scale consistency assessment [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1318-1331. |
| [5] | Yaqing WANG, Zhonghui WANG. River network automated selection method based on heterogeneous graph convolutional networks [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1332-1345. |
| [6] | Xiaoya AN, Weiru GUO, Pengxin ZHANG, Xinxin LI, Lei SHI. Ship trajectories clustering method considering similarity in geometric position and mobility features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1107-1121. |
| [7] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [8] | Qingli LUO, Xueyan LI, Guoman HUANG, Honghui CHEN, Minglong XUE, Jian LI. AOSN: alpha optimal structure network for height estimation from a single SAR image in mountain areas [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 888-898. |
| [9] | Yipeng LU, Yuhao LI, Haiping WANG, Yuan LIU, Zhen DONG, Bisheng YANG. CVT space warping based multi-scale neural implicit surface reconstruction for outdoor scenes [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 702-713. |
| [10] | Wei TU, Xiangyuan CHI, Tianhong ZHAO, Jian YANG, Shiping ZHU, Deli CHEN. Multi-view spatio-temporal graph convolutional networks model for urban drainage networks flow prediction [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 334-344. |
| [11] | Zhenghua ZHANG, Guoliang CHEN. A lightweight rotation-invariant network for LiDAR-based place recognition [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 90-103. |
| [12] | Yan SHI, Da WANG, Min DENG, Xuexi YANG. Spatio-temporal anomaly detection: connotation transformation and implementation path from data-driven to knowledge-driven modeling [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1493-1504. |
| [13] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
| [14] | Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335. |
| [15] | Liming JIANG, Yi SHAO, Zhiwei ZHOU, Peifeng MA, Teng WANG. A review of intelligent InSAR data processing: recent advancements, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1037-1056. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
