Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (12): 2391-2403.doi: 10.11947/j.AGCS.2024.20230579
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
Received:2024-01-04
Online:2025-01-06
Published:2025-01-06
Contact:
Shunping JI
E-mail:liujinwhu@whu.edu.cn;jishunping@whu.edu.cn
About author:LIU Jin (1996—), female, PhD, majors in multi-view stereo, dense image matching and 3D reconstruction. E-mail: liujinwhu@whu.edu.cn
Supported by:CLC Number:
Jin LIU, Shunping JI. Deep learning based multi-view dense matching with joint depth and surface normal estimation[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2391-2403.
Tab. 2
The accuracy of surface normal estimation by four methods on the WHU-OMVS patch-size test set"
| 方法 | mean/(°)↓ | median/(°)↓ | PAG-N10°/(%)↑ | PAG-N20°/(%)↑ | PAG-N30°/(%)↑ |
|---|---|---|---|---|---|
| COLMAP | 20.06 | 11.54 | 46.27 | 68.41 | 79.28 |
| NAS | 16.84 | 14.20 | 30.03 | 70.29 | 88.61 |
| Cas-MVSNet(D2N) | 11.86 | 7.88 | 61.91 | 85.69 | 93.03 |
| DN-MVS(本文方法) | 8.23 | 5.70 | 72.20 | 91.86 | 97.19 |
Tab. 3
Evaluation of DSM results reconstructed by four solutions on the WHU-OMVS test set"
| 方法 | 边缘区域 | 非边缘区域 | 完整区域 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| PAG-S0.2 m/(%)↑ | PAG-S0.4 m/(%)↑ | PAG-S0.6 m/(%)↑ | PAG-S0.05 m/(%)↑ | PAG-S0.1 m/(%)↑ | PAG-S0.2 m/(%)↑ | PAG-S0.2 m/(%)↑ | PAG-S0.4 m/(%)↑ | PAG-S0.6 m/(%)↑ | |
| COLMAP | 50.08 | 71.55 | 78.01 | 47.70 | 65.80 | 82.74 | 80.32 | 92.38 | 95.67 |
| Open MVS | 61.96 | 78.37 | 83.35 | 42.66 | 64.71 | 84.94 | 83.24 | 94.07 | 96.53 |
| Cas-MVSNet | 50.61 | 71.30 | 81.27 | 44.68 | 69.90 | 87.57 | 84.84 | 94.40 | 97.02 |
| DN-MVS | 61.05 | 79.20 | 84.99 | 50.99 | 73.23 | 88.81 | 86.76 | 95.11 | 97.11 |
| (本文方法) | (+10.44) | (+7.90) | (+3.72) | (+6.31) | (+3.33) | (+1.24) | (+1.92) | (+0.71) | (+0.09) |
Tab. 4
Evaluation of 3D point cloud results in the Tianjin test area"
| 方法 | 平均距离/m↓ | 百分比(阈值<0.2 m)/(%)↑ | 百分比(阈值<0.4 m/(%))↑ | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Acc. | Comp. | overall | Acc. | Comp. | F1值 | Acc. | Comp. | F1值 | |
| COLMAP | 0.509 | 0.367 | 0.438 | 46.14 | 62.91 | 53.24 | 66.10 | 81.96 | 73.18 |
| Open MVS | 0.410 | 0.306 | 0.358 | 47.57 | 72.97 | 57.59 | 75.03 | 84.61 | 79.53 |
| Cas-MVSNet | 0.410 | 0.256 | 0.333 | 51.41 | 80.13 | 62.63 | 74.82 | 87.10 | 80.49 |
| DN-MVS | 0.404 | 0.237 | 0.320 | 51.51 | 81.53 | 63.13 | 75.28 | 87.86 | 81.14 |
Tab. 6
The effect of the components and the weighting parameters of each stage in the loss function"
| 损失项设置 | 深度推理 | 法线推理 | ||||
|---|---|---|---|---|---|---|
| MAE/m↓ | PAG-D0.3 m/(%)↑ | PAG-D0.6 m/(%)↑ | mean/(°)↓ | PAG-N20°/(%)↑ | PAG-N30°/(%)↑ | |
移除 和![]() | 0.143 | 91.92 | 97.34 | 8.67 | 90.91 | 96.78 |
移除![]() | 0.140 | 92.83 | 97.66 | 8.42 | 90.36 | 96.99 |
移除![]() | 0.134 | 92.97 | 97.79 | 8.26 | 91.17 | 96.89 |
| α1∶α2∶β=1∶1∶1 | 0.135 | 92.73 | 97.74 | 8.38 | 91.40 | 97.02 |
| λ1∶λ2∶λ3=1∶1∶1 | 0.135 | 92.95 | 97.69 | 8.43 | 91.44 | 96.95 |
| 本文方法 | 0.132 | 93.09 | 97.81 | 8.23 | 91.86 | 97.19 |
| [1] | 董秀军, 邓博, 袁飞云, 等. 航空遥感在地质灾害领域的应用:现状与展望[J]. 武汉大学学报(信息科学版), 2023, 48(12): 1897-1913. |
| DONG Xiujun, DENG Bo, YUAN Feiyun, et al. Application of aerial remote sensing in geological hazards: current situation and prospects[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1897-1913. | |
| [2] | 沙洪俊, 袁修孝. 双目影像密集匹配方法的回顾与展望[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1813-1833. |
| SHA Hongjun, YUAN Xiuxiao. State-of-the-art binocular image dense matching method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1813-1833. | |
| [3] | HONG Danfeng, ZHANG Bing, LI Hao, et al. Cross-city matters: a multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks[J]. Remote Sensing of Environment, 2023, 299: 113856. |
| [4] | HONG Danfeng, ZHANG Bing, LI Xuyang, et al. SpectralGPT: spectral remote sensing foundation model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(8): 5227-5244. |
| [5] | KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 4015-4026. |
| [6] | SUN Xian, WANG Peijin, LU Wanxuan, et al. RingMo: a remote sensing foundation model with masked image modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 3194732. |
| [7] |
刘瑾, 季顺平. 基于深度学习的航空遥感影像密集匹配[J]. 测绘学报, 2019, 48(9): 1141-1150. DOI:.
doi: 10.11947/j.AGCS.2019.20180247 |
|
LIU Jin, JI Shunping. Deep learning based dense matching for aerial remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1141-1150. DOI:.
doi: 10.11947/j.AGCS.2019.20180247 |
|
| [8] | JI Shunping, LIU Jin, LU Meng. CNN-based dense image matching for aerial remote sensing images[J]. Photogrammetric Engineering & Remote Sensing, 2019, 85(6): 415-424. |
| [9] | 季顺平, 罗冲, 刘瑾. 基于深度学习的立体影像密集匹配方法综述[J]. 武汉大学学报(信息科学版), 2021, 46(2): 193-202. |
| JI Shunping, LUO Chong, LIU Jin. A review of dense stereo image matching methods based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. | |
| [10] |
龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6): 693-704. DOI:.
doi: 10.11947/j.AGCS.2018.20170640 |
|
GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 693-704. DOI:.
doi: 10.11947/j.AGCS.2018.20170640 |
|
| [11] | LAGA H, JOSPIN L V, BOUSSAID F, et al. A survey on deep learning techniques for stereo-based depth estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1738-1764. |
| [12] | YAO Yao, LUO Zixin, LI Shiwei, et al. MVSNet: depth inference for unstructured multi-view stereo[C]//Proceedings of 2018 European Conference on Computer Vision. Munich: Springer, 2018: 767-783. |
| [13] | GU Xiaodong, FAN Zhiwen, ZHU Siyu, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2495-2504. |
| [14] | WEI Zizhuang, ZHU Qingtian, MIN Chen, et al. AA-RMVSNet: adaptive aggregation recurrent multi-view stereo network[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 6187-6196. |
| [15] | CHANG Jiaren, CHANG Peichun, CHEN Yongsheng. Attention-aware feature aggregation for real-time stereo matching on edge devices[C]//Proceedings of 2020 Asian Conference on Computer Vision. Kyoto: Springer, 2020: 365-380. |
| [16] | LIU Jin, JI Shunping. A novel recurrent encoder-decoder structure for large-scale multi-view stereo reconstruction from an open aerial dataset[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6050-6059. |
| [17] | YAN Jianfeng, WEI Zizhuang, YI Hongwei, et al. Dense hybrid recurrent multi-view stereo net with dynamic consistency checking[C]//Proceedings of 2020 European Conference on Computer Vision. Glasgow: Springer, 2020: 674-689. |
| [18] | YU Dawen, JI Shunping, LIU Jin, et al. Automatic 3D building reconstruction from multi-view aerial images with deep learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171: 155-170. |
| [19] | LIU Jin, GAO Jian, JI Shunping, et al. Deep learning based multi-view stereo matching and 3D scene reconstruction from oblique aerial images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 204: 42-60. |
| [20] | GAO Jian, LIU Jin, JI Shunping. Rational polynomial camera model warping for deep learning based satellite multi-view stereo matching[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 6128-6137. |
| [21] | GAO Jian, LIU Jin, JI Shunping. A general deep learning based framework for 3D reconstruction from multi-view stereo satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195: 446-461. |
| [22] | BLEYER M, RHEMANN C, ROTHER C. PatchMatch stereo-stereo matching with slanted support windows[C]//Proceedings of 2011 British Machine Vision Conference. Dundee: British Machine Vision Association, 2011: 1-11. |
| [23] | GALLIANI S, LASINGER K, SCHINDLER K. Massively parallel multiview stereopsis by surface normal diffusion[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 873-881. |
| [24] | SCHÖNBERGER J L, ZHENG Enliang, FRAHM J M, et al. Pixelwise view selection for unstructured multi-view stereo[C]//Proceedings of 2016 European Conference on Computer Vision. Amsterdam: Springer Cham, 2016: 501-518. |
| [25] | XU Qingshan, TAO Wenbing. Multi-scale geometric consistency guided multi-view stereo[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5478-5487. |
| [26] | LONG Xiaoxiao, LIU Lingjie, THEOBALT C, et al. Occlusion-aware depth estimation with adaptive normal constraints[C]//Proceedings of 2020 European Conference on Computer Vision. Glasgow: Springer, 2020: 640-657. |
| [27] | KUSUPATI U, CHENG Shuo, CHEN Rui, et al. Normal assisted stereo depth estimation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2186-2196. |
| [28] | ZHAO Wang, LIU Shaohui, WEI Yi, et al. A confidence-based iterative solver of depths and surface normals for deep multi-view stereo[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Visio. Montreal: IEEE, 2021: 6148-6157. |
| [29] | YANG Zhenheng, WANG Peng, XU Wei, et al. Unsupervised learning of geometry with edge-aware depth-normal consistency[EB/OL]. [2023-10-01]. https://arxiv.org/abs/1711.03665v1. |
| [30] | KNAPITSCH A, PARK J, ZHOU Qianyi, et al. Tanks and temples[J]. ACM Transactions on Graphics, 2017, 36(4): 1-13. |
| [31] | AANÆS H, JENSEN R R, VOGIATZIS G, et al. Large-scale data for multiple-view stereopsis[J]. International Journal of Computer Vision, 2016, 120(2): 153-168. |
| [1] | Shunping JI, Jin LIU, Jian GAO, Jianya GONG. An intelligent 3D reconstruction framework via deep learning based multi-view image matching [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1633-1646. |
| [2] | Jixian ZHANG, Haiyan GU, Huan NI, Haitao LI, Yi YANG, Shaopeng DING, Songman SUI. Deep learning methods for remote sensing intelligent change detection: evolution and development [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1347-1370. |
| [3] | Shuai FANG, Jiaen LIU, Jing ZHANG. Spatio-temporal fusion algorithm based on adaptive reference feature incorporation and multi-scale feature aggregation [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1476-1488. |
| [4] | Nina MENG, Fengmei LI, Xiaodong ZHOU. Data and cognition dual-driven building group generalization results and scale consistency assessment [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1318-1331. |
| [5] | Yaqing WANG, Zhonghui WANG. River network automated selection method based on heterogeneous graph convolutional networks [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1332-1345. |
| [6] | Xiaoya AN, Weiru GUO, Pengxin ZHANG, Xinxin LI, Lei SHI. Ship trajectories clustering method considering similarity in geometric position and mobility features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1107-1121. |
| [7] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [8] | Qingli LUO, Xueyan LI, Guoman HUANG, Honghui CHEN, Minglong XUE, Jian LI. AOSN: alpha optimal structure network for height estimation from a single SAR image in mountain areas [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 888-898. |
| [9] | Yipeng LU, Yuhao LI, Haiping WANG, Yuan LIU, Zhen DONG, Bisheng YANG. CVT space warping based multi-scale neural implicit surface reconstruction for outdoor scenes [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 702-713. |
| [10] | Wei TU, Xiangyuan CHI, Tianhong ZHAO, Jian YANG, Shiping ZHU, Deli CHEN. Multi-view spatio-temporal graph convolutional networks model for urban drainage networks flow prediction [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 334-344. |
| [11] | Xiaohua TONG, Rong HUANG, Jiarui CAO, Chen LIU, Rong WANG, Yusheng XU, Zhen YE, Yanmin JIN, Shijie LIU, Sicong LIU, Yongjiu FENG, Huan XIE. Intelligent methods for 3D terrain reconstruction of the Moon and near-Earth planets: a review of current advances and future perspectives [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1917-1933. |
| [12] | Zhili ZHANG, Huiwei JIANG, Xiangyun HU. A minimal-interaction framework for accurate and batch extraction of geospatial objects from remote sensing imagery [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1863-1876. |
| [13] | Zhenghua ZHANG, Guoliang CHEN. A lightweight rotation-invariant network for LiDAR-based place recognition [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 90-103. |
| [14] | Yan SHI, Da WANG, Min DENG, Xuexi YANG. Spatio-temporal anomaly detection: connotation transformation and implementation path from data-driven to knowledge-driven modeling [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1493-1504. |
| [15] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
