Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (12): 2391-2403.doi: 10.11947/j.AGCS.2024.20230579
• Photogrammetry and Remote Sensing • Previous Articles
Received:
2024-01-04
Published:
2025-01-06
Contact:
Shunping JI
E-mail:liujinwhu@whu.edu.cn;jishunping@whu.edu.cn
About author:
LIU Jin (1996—), female, PhD, majors in multi-view stereo, dense image matching and 3D reconstruction. E-mail: liujinwhu@whu.edu.cn
Supported by:
CLC Number:
Jin LIU, Shunping JI. Deep learning based multi-view dense matching with joint depth and surface normal estimation[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2391-2403.
Tab. 2
The accuracy of surface normal estimation by four methods on the WHU-OMVS patch-size test set"
方法 | mean/(°)↓ | median/(°)↓ | PAG-N10°/(%)↑ | PAG-N20°/(%)↑ | PAG-N30°/(%)↑ |
---|---|---|---|---|---|
COLMAP | 20.06 | 11.54 | 46.27 | 68.41 | 79.28 |
NAS | 16.84 | 14.20 | 30.03 | 70.29 | 88.61 |
Cas-MVSNet(D2N) | 11.86 | 7.88 | 61.91 | 85.69 | 93.03 |
DN-MVS(本文方法) | 8.23 | 5.70 | 72.20 | 91.86 | 97.19 |
Tab. 3
Evaluation of DSM results reconstructed by four solutions on the WHU-OMVS test set"
方法 | 边缘区域 | 非边缘区域 | 完整区域 | ||||||
---|---|---|---|---|---|---|---|---|---|
PAG-S0.2 m/(%)↑ | PAG-S0.4 m/(%)↑ | PAG-S0.6 m/(%)↑ | PAG-S0.05 m/(%)↑ | PAG-S0.1 m/(%)↑ | PAG-S0.2 m/(%)↑ | PAG-S0.2 m/(%)↑ | PAG-S0.4 m/(%)↑ | PAG-S0.6 m/(%)↑ | |
COLMAP | 50.08 | 71.55 | 78.01 | 47.70 | 65.80 | 82.74 | 80.32 | 92.38 | 95.67 |
Open MVS | 61.96 | 78.37 | 83.35 | 42.66 | 64.71 | 84.94 | 83.24 | 94.07 | 96.53 |
Cas-MVSNet | 50.61 | 71.30 | 81.27 | 44.68 | 69.90 | 87.57 | 84.84 | 94.40 | 97.02 |
DN-MVS | 61.05 | 79.20 | 84.99 | 50.99 | 73.23 | 88.81 | 86.76 | 95.11 | 97.11 |
(本文方法) | (+10.44) | (+7.90) | (+3.72) | (+6.31) | (+3.33) | (+1.24) | (+1.92) | (+0.71) | (+0.09) |
Tab. 4
Evaluation of 3D point cloud results in the Tianjin test area"
方法 | 平均距离/m↓ | 百分比(阈值<0.2 m)/(%)↑ | 百分比(阈值<0.4 m/(%))↑ | ||||||
---|---|---|---|---|---|---|---|---|---|
Acc. | Comp. | overall | Acc. | Comp. | F1值 | Acc. | Comp. | F1值 | |
COLMAP | 0.509 | 0.367 | 0.438 | 46.14 | 62.91 | 53.24 | 66.10 | 81.96 | 73.18 |
Open MVS | 0.410 | 0.306 | 0.358 | 47.57 | 72.97 | 57.59 | 75.03 | 84.61 | 79.53 |
Cas-MVSNet | 0.410 | 0.256 | 0.333 | 51.41 | 80.13 | 62.63 | 74.82 | 87.10 | 80.49 |
DN-MVS | 0.404 | 0.237 | 0.320 | 51.51 | 81.53 | 63.13 | 75.28 | 87.86 | 81.14 |
Tab. 6
The effect of the components and the weighting parameters of each stage in the loss function"
损失项设置 | 深度推理 | 法线推理 | ||||
---|---|---|---|---|---|---|
MAE/m↓ | PAG-D0.3 m/(%)↑ | PAG-D0.6 m/(%)↑ | mean/(°)↓ | PAG-N20°/(%)↑ | PAG-N30°/(%)↑ | |
移除![]() ![]() | 0.143 | 91.92 | 97.34 | 8.67 | 90.91 | 96.78 |
移除![]() | 0.140 | 92.83 | 97.66 | 8.42 | 90.36 | 96.99 |
移除![]() | 0.134 | 92.97 | 97.79 | 8.26 | 91.17 | 96.89 |
α1∶α2∶β=1∶1∶1 | 0.135 | 92.73 | 97.74 | 8.38 | 91.40 | 97.02 |
λ1∶λ2∶λ3=1∶1∶1 | 0.135 | 92.95 | 97.69 | 8.43 | 91.44 | 96.95 |
本文方法 | 0.132 | 93.09 | 97.81 | 8.23 | 91.86 | 97.19 |
[1] | 董秀军, 邓博, 袁飞云, 等. 航空遥感在地质灾害领域的应用:现状与展望[J]. 武汉大学学报(信息科学版), 2023, 48(12): 1897-1913. |
DONG Xiujun, DENG Bo, YUAN Feiyun, et al. Application of aerial remote sensing in geological hazards: current situation and prospects[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1897-1913. | |
[2] | 沙洪俊, 袁修孝. 双目影像密集匹配方法的回顾与展望[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1813-1833. |
SHA Hongjun, YUAN Xiuxiao. State-of-the-art binocular image dense matching method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1813-1833. | |
[3] | HONG Danfeng, ZHANG Bing, LI Hao, et al. Cross-city matters: a multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks[J]. Remote Sensing of Environment, 2023, 299: 113856. |
[4] | HONG Danfeng, ZHANG Bing, LI Xuyang, et al. SpectralGPT: spectral remote sensing foundation model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(8): 5227-5244. |
[5] | KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 4015-4026. |
[6] | SUN Xian, WANG Peijin, LU Wanxuan, et al. RingMo: a remote sensing foundation model with masked image modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 3194732. |
[7] |
刘瑾, 季顺平. 基于深度学习的航空遥感影像密集匹配[J]. 测绘学报, 2019, 48(9): 1141-1150. DOI:.
doi: 10.11947/j.AGCS.2019.20180247 |
LIU Jin, JI Shunping. Deep learning based dense matching for aerial remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1141-1150. DOI:.
doi: 10.11947/j.AGCS.2019.20180247 |
|
[8] | JI Shunping, LIU Jin, LU Meng. CNN-based dense image matching for aerial remote sensing images[J]. Photogrammetric Engineering & Remote Sensing, 2019, 85(6): 415-424. |
[9] | 季顺平, 罗冲, 刘瑾. 基于深度学习的立体影像密集匹配方法综述[J]. 武汉大学学报(信息科学版), 2021, 46(2): 193-202. |
JI Shunping, LUO Chong, LIU Jin. A review of dense stereo image matching methods based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. | |
[10] |
龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6): 693-704. DOI:.
doi: 10.11947/j.AGCS.2018.20170640 |
GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 693-704. DOI:.
doi: 10.11947/j.AGCS.2018.20170640 |
|
[11] | LAGA H, JOSPIN L V, BOUSSAID F, et al. A survey on deep learning techniques for stereo-based depth estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1738-1764. |
[12] | YAO Yao, LUO Zixin, LI Shiwei, et al. MVSNet: depth inference for unstructured multi-view stereo[C]//Proceedings of 2018 European Conference on Computer Vision. Munich: Springer, 2018: 767-783. |
[13] | GU Xiaodong, FAN Zhiwen, ZHU Siyu, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2495-2504. |
[14] | WEI Zizhuang, ZHU Qingtian, MIN Chen, et al. AA-RMVSNet: adaptive aggregation recurrent multi-view stereo network[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 6187-6196. |
[15] | CHANG Jiaren, CHANG Peichun, CHEN Yongsheng. Attention-aware feature aggregation for real-time stereo matching on edge devices[C]//Proceedings of 2020 Asian Conference on Computer Vision. Kyoto: Springer, 2020: 365-380. |
[16] | LIU Jin, JI Shunping. A novel recurrent encoder-decoder structure for large-scale multi-view stereo reconstruction from an open aerial dataset[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6050-6059. |
[17] | YAN Jianfeng, WEI Zizhuang, YI Hongwei, et al. Dense hybrid recurrent multi-view stereo net with dynamic consistency checking[C]//Proceedings of 2020 European Conference on Computer Vision. Glasgow: Springer, 2020: 674-689. |
[18] | YU Dawen, JI Shunping, LIU Jin, et al. Automatic 3D building reconstruction from multi-view aerial images with deep learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171: 155-170. |
[19] | LIU Jin, GAO Jian, JI Shunping, et al. Deep learning based multi-view stereo matching and 3D scene reconstruction from oblique aerial images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 204: 42-60. |
[20] | GAO Jian, LIU Jin, JI Shunping. Rational polynomial camera model warping for deep learning based satellite multi-view stereo matching[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 6128-6137. |
[21] | GAO Jian, LIU Jin, JI Shunping. A general deep learning based framework for 3D reconstruction from multi-view stereo satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195: 446-461. |
[22] | BLEYER M, RHEMANN C, ROTHER C. PatchMatch stereo-stereo matching with slanted support windows[C]//Proceedings of 2011 British Machine Vision Conference. Dundee: British Machine Vision Association, 2011: 1-11. |
[23] | GALLIANI S, LASINGER K, SCHINDLER K. Massively parallel multiview stereopsis by surface normal diffusion[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 873-881. |
[24] | SCHÖNBERGER J L, ZHENG Enliang, FRAHM J M, et al. Pixelwise view selection for unstructured multi-view stereo[C]//Proceedings of 2016 European Conference on Computer Vision. Amsterdam: Springer Cham, 2016: 501-518. |
[25] | XU Qingshan, TAO Wenbing. Multi-scale geometric consistency guided multi-view stereo[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5478-5487. |
[26] | LONG Xiaoxiao, LIU Lingjie, THEOBALT C, et al. Occlusion-aware depth estimation with adaptive normal constraints[C]//Proceedings of 2020 European Conference on Computer Vision. Glasgow: Springer, 2020: 640-657. |
[27] | KUSUPATI U, CHENG Shuo, CHEN Rui, et al. Normal assisted stereo depth estimation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2186-2196. |
[28] | ZHAO Wang, LIU Shaohui, WEI Yi, et al. A confidence-based iterative solver of depths and surface normals for deep multi-view stereo[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Visio. Montreal: IEEE, 2021: 6148-6157. |
[29] | YANG Zhenheng, WANG Peng, XU Wei, et al. Unsupervised learning of geometry with edge-aware depth-normal consistency[EB/OL]. [2023-10-01]. https://arxiv.org/abs/1711.03665v1. |
[30] | KNAPITSCH A, PARK J, ZHOU Qianyi, et al. Tanks and temples[J]. ACM Transactions on Graphics, 2017, 36(4): 1-13. |
[31] | AANÆS H, JENSEN R R, VOGIATZIS G, et al. Large-scale data for multiple-view stereopsis[J]. International Journal of Computer Vision, 2016, 120(2): 153-168. |
[1] | Yan SHI, Da WANG, Min DENG, Xuexi YANG. Spatio-temporal anomaly detection: connotation transformation and implementation path from data-driven to knowledge-driven modeling [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1493-1504. |
[2] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
[3] | Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335. |
[4] | Dong WEI, Xinyi LIU, Yongjun ZHANG. The technology and intelligent development of 3D line cloud reconstruction from multiple images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1025-1036. |
[5] | Liming JIANG, Yi SHAO, Zhiwei ZHOU, Peifeng MA, Teng WANG. A review of intelligent InSAR data processing: recent advancements, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1037-1056. |
[6] | Chi GUO, Yang LIU, Yarong LUO, Jingnan LIU, Quan ZHANG. Research progress in the application of image semantic information in visual SLAM [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1057-1076. |
[7] | Xunqiang GONG, Hongyu WANG, Tieding LU, Wei YOU. A general progressive decomposition long-term prediction network model for high-speed railway bridge pier settlement [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1113-1127. |
[8] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
[9] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
[10] | Huimin LIU, Chenwei ZHANG, Kaiqi CHEN, Min DENG, Chong PENG. Deep learning-based spatio-temporal prediction and uncertainty assessment of urban PM2.5 distribution [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 750-760. |
[11] | SUN Chuanmeng, WEI Yu, LI Xinyu, MA Tiehua, WU Zhibo. Intelligent detection method of image water level inversion for water level without water scale in complex scenes [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 558-568. |
[12] | JIANG San, LIU Kai, LI Qingquan, JIANG Wanshou. Learned local features for SfM reconstruction of UAV images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 321-331. |
[13] | LIAO Zhaohong, ZHANG Yichen, YANG Biao, LIN Mingchun, SUN Wenbo, GAO Zhi. Monocular height estimation method of remote sensing image based on Swin Transformer-CNN and its application in highway road construction sites [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 344-352. |
[14] | LIN Yunhao, WANG Yanjun, LI Shaochun, CAI Hengfan. A coupled DeepLab and Transformer approach for fine classification of crop cultivation types in remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 353-366. |
[15] | Mi WANG, Xu CHENG, Jun PAN, Yingdong PI, Jing XIAO. Large models enabling intelligent photogrammetry: status, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1955-1966. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 88
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 112
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||