Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (10): 1727-1740.doi: 10.11947/j.AGCS.2025.20250070
• Review • Next Articles
Xuesheng ZHAO(
), Wenlan XIE(
), Wenbin SUN
Received:2025-02-21
Revised:2025-09-15
Online:2025-11-14
Published:2025-11-14
Contact:
Wenlan XIE
E-mail:zxs@cumtb.edu.cn;wenlanxxx@163.com
About author:ZHAO Xuesheng (1967—), male, PhD, professor, majors in modeling and computing of the global spatial discrete grids as well as theories and methods of 3D GIS. E-mail: zxs@cumtb.edu.cn
Supported by:CLC Number:
Xuesheng ZHAO, Wenlan XIE, Wenbin SUN. Research progress and key issues in spatial grid interoperability[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1727-1740.
Tab. 1
Encoding methods of grid systems"
| (孔径)形状 | 编码方式 | 所属类别 | 提出时间 |
|---|---|---|---|
| 四孔六边形 | 改进的GBT[ | 层次编码 | 2007 |
| HQBS(六边形四元平衡结构)[ | 层次编码 | 2010 | |
| 一维线性地址码[ | 坐标编码 | 2011 | |
| 菱形块四叉树[ | 填充曲线编码 | 2017 | |
| HLST(六边形格点对称树)[ | 层次编码 | 2019 | |
| HLQT(六边形格点四叉树)[ | 层次编码 | 2020 | |
| HHUT(一致瓦片六边形层次结构)[ | 层次编码 | 2023 | |
| 三孔六边形 | A3坐标[ | 坐标编码 | 2006 |
| A3HT(三孔六边形树状结构)[ | 层次编码 | 2008 | |
| 复进制数编码[ | 层次编码 | 2018 | |
| 自适应经纬编码[ | 其他 | 2019 | |
| 七孔六边形 | H3层次编码[ | 层次编码 | 2015 |
| 四边形 | DQG编码[ | 填充曲线编码 | 2007 |
| GeoSOT编码[ | 填充曲线编码 | 2012 | |
| rHealPIX编码[ | 填充曲线编码 | 2016 | |
| S2编码[ | 填充曲线编码 | 2017 | |
| 三角形 | Dutton编码[ | 层次编码 | 1989 |
| Goodchild编码[ | 层次编码 | 1992 | |
| SQC(semi-quad codes)编码[ | 层次编码 | 1993 | |
| Lee编码[ | 层次编码 | 2000 | |
| 线性连续编码[ | 层次编码 | 2001 |
Tab. 2
Classic grid systems"
| 正多面体 | 剖分孔径 | 单元形状 | 系统名称 | 研发机构/商业公司 |
|---|---|---|---|---|
| 正二十面体 | 4 | 六边形 | ISEA4H[ | 欧空局 |
| 正二十面体 | 3 | 六边形 | The PYXIS Earth[ | PYXIS |
| 正二十面体 | 7 | 六边形 | H3[ | Uber |
| 正二十面体 | 3、4 | 六边形、三角形 | OpenEAGGR[ | Riskaware |
| 正二十面体 | 3 | 六边形 | Geogrid[ | Paris Lodron University of Salzburg |
| 正二十面体 | 3、4、7 | 六边形、四边形、三角形 | DGGRID8.1b[ | Southern Terra Cognita Laboratory |
| 正八面体 | 4 | 四边形 | DQG[ | 中国矿业大学(北京) |
| 无 | 4 | 四边形 | GeoSOT[ | 北京大学 |
| 正六面体 | 9 | 四边形 | rHealPIX[ | 澳大利亚国立大学 |
| 无 | 20 | 四边形 | Open Location Code[ | |
| 正六面体 | 4 | 四边形 | S2 Geometry[ | |
| 正六面体 | 9 | 四边形 | SCENZ-Grid[ | Landcare Research |
| 正八面体 | 4 | 三角形 | QTM[ | University of Zürich |
| [1] | 刘先林. 中国实景三维建设的困境与建议[J]. 发展研究, 2023, 40(9): 1-8. |
| LIU Xianlin. Predicament and suggestion of three-dimensional construction of China real scene[J]. Development Research, 2023, 40(9): 1-8. | |
| [2] |
赵学胜, 贲进, 孙文彬, 等. 地球剖分格网研究进展综述[J]. 测绘学报, 2016, 45(): 1-14. DOI: .
doi: 10.11947/j.AGCS.2016.F001 |
|
ZHAO Xuesheng, BEN Jin, SUN Wenbin, et al. Overview of the research progress in the Earth tessellation grid[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(): 1-14. DOI: .
doi: 10.11947/j.AGCS.2016.F001 |
|
| [3] | 燕琴, 翟亮, 刘坡. 实景三维中国建设关键技术研究综述[J]. 测绘科学, 2023, 48(7): 1-9. |
| YAN Qin, ZHAI Liang, LIU Po. Review on the key technologies of 3D real scene construction in China[J]. Science of Surveying and Mapping, 2023, 48(7): 1-9. | |
| [4] | BARNES R. Optimal orientations of discrete global grids and the Poles of Inaccessibility[J]. International Journal of Digital Earth, 2020, 13(7): 803-816. |
| [5] | MEHLMANN C, KORN P. Sea-ice dynamics on triangular grids[J]. Journal of Computational Physics, 2021, 428: 110086. |
| [6] | ZÄNGL G, REINERT D, RÍPODAS P, et al. The ICON (ICO sahedral non-hydrostatic) modelling framework of DWD and MPI-M: description of the non-hydrostatic dynamical core[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(687): 563-579. |
| [7] | 刘钢, 马俊, 徐玮, 等. 基于Geo SOT的分布式遥感图像高效存储与检索[J]. 湖南理工学院学报(自然科学版), 2025, 38(1): 14-17. |
| LIU Gang, MA Jun, XU Wei, et al. Efficient storage and retrieval of distributed remote sensing images based on GeoSOT[J]. Journal of Hunan Institute of Science and Technology (Natural Sciences), 2025, 38(1): 14-17. | |
| [8] | 李世忠, 宋树华, 程承旗, 等. 基于GeoSOT网格的“天绘一号”卫星影像数据组织[J]. 遥感学报, 2012, 16(): 102-107. |
| LI Shizhong, SONG Shuhua, CHENG Chengqi, et al. Mapping Satellite-1 remote sensing data organization based on GeoSOT[J]. National Remote Sensing Bulletin, 2012, 16(): 102-107. | |
| [9] | AINI A N, DEWANTARI O A, MANDALA D P A, et al. An enhanced earthquake risk analysis using H3 spatial indexing[J]. IOP Conference Series: Earth and Environmental Science, 2023, 1245(1): 012014. |
| [10] | SILVA V, CALDERON A, CARUSO M, et al. Global seismic risk map (v2023.1.0)[EB/OL]. [2024-09-17]. https://doi.org/10.5281/zenodo.8409623. |
| [11] | WU Xiangyu, LEI Yi, TONG Xiaochong, et al. A non-rigid hierarchical discrete grid structure and its application to UAVs conflict detection and path planning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5393-5411. |
| [12] | OGC. Topic 21: discrete global grid systems abstract specification[EB/OL]. [2025-01-25]. https://docs.ogc.org/as/15-104r5/15-104r5.html. |
| [13] | OGC. Discrete global grid systems-part 1: core reference system and operations and equal area earth reference system[EB/OL]. https://docs.ogc.org/as/20-040r3/20-040r3.html#toc25, 2024-09-17. |
| [14] | Geographic information-discrete global grid systems specifications-part 1: core reference system and operations, and equal area earth reference system: ISO 19170-1: 2021[S]. International Organization for Standardization, 2021. |
| [15] | ZHOU Liangchen, LIAN Wenjie, LV Guonian, et al. Efficient encoding and decoding algorithm for triangular discrete global grid based on Hybrid Transformation Strategy[J]. Computers, Environment and Urban Systems, 2018, 68: 110-120. |
| [16] | WANG R, BEN J, ZHOU J B, et al. A generic encoding and operation scheme for mixed aperture three and four hexagonal discrete global grid systems[J]. International Journal of Geographical Information Science, 2021, 35(3): 513-555. |
| [17] | AMIRI A M, SAMAVATI F, PETERSON P. Categorization and conversions for indexing methods of discrete global grid systems[J]. ISPRS International Journal of Geo-Information, 2015, 4(1): 320-336. |
| [18] | LI Y L, ZHAO X S, SUN W B, et al. A GtoG direct coding mapping method for multi-type global discrete grids based on space filling curves[J]. Isprs International Journal of Geo-Information, 2022, 11(12): 595. |
| [19] | LAPAINE M, FRANCULA N. Approximately conformal, equivalent and equidistant map projections[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(3): 33-40. |
| [20] | 徐红波, 郝忠孝. 基于空间填充曲线网格划分的最近邻查询算法[J]. 计算机科学, 2010, 37(1): 184-188. |
| XU Hongbo, HAO Zhongxiao. Nearest-neighbor query algorithm based on grid partition of space-filling curve[J]. Computer Science, 2010, 37(1): 184-188. | |
| [21] | CHEN Yihang, CAO Zening, WANG Jinxin, et al. Encoding conversion algorithm of quaternary triangular mesh[J]. ISPRS Interna tional Journal of Geo-Information, 2022, 11(1): 33. |
| [22] | 童晓冲, 贲进, 张永生. 全球多分辨率六边形网格剖分及地址编码规则[J]. 测绘学报, 2007, 36(4): 428-435. |
| TONG Xiaochong, BEN Jin, ZHANG Yongsheng. The subdivision of global multi-resolution hexagonal grid and the rules of address coding[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(4): 428-435. | |
| [23] | TONG Xiaochong, BEN Jin, WANG Ying. A new effective hexagonal discrete global grid system: hexagonal quad balanced structure[C]//Proceedings of the 18th International Conference on Geoinformatics. Beijing: IEEE, 2010: 1-6. |
| [24] | 白建军. 基于正八面体的四孔六边形球面格网编码及索引[J]. 遥感学报, 2011, 15(6): 1125-1137. |
| BAI Jianjun. Location coding and indexing aperture 4 hexagonal discrete global grid based on octahedron[J]. Journal of Remote Sensing, 2011, 15(6): 1125-1137. | |
| [25] | 张继凯, 聂俊岚, 陈贺敏, 等. 基于菱形块四叉树的全球六边形网格实时绘制方法[J]. 计算机辅助设计与图形学学报, 2017, 29(10): 1824-1834. |
| ZHANG Jikai, NIE Junlan, CHEN Hemin, et al. Real-time rendering method for global hexagon grid based on quad-tree of diamond blocks[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(10): 1824-1834. | |
| [26] |
杜灵瑀, 马秋禾, 贲进, 等. 平面四孔六边形格网系统复进制数建模及编码运算[J]. 测绘学报, 2019, 48(6): 791-800. DOI: .
doi: 10.11947/j.AGCS.2019.20180372 |
|
DU Lingyu, MA Qiuhe, BEN Jin, et al. Complex radix number modeling and encoding operation for the planar aperture 4 hexagon grid system[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6): 791-800. DOI: .
doi: 10.11947/j.AGCS.2019.20180372 |
|
| [27] | 王蕊, 贲进, 杜灵瑀, 等. 正二十面体四孔六边形格网系统编码运算[J]. 武汉大学学报(信息科学版), 2020, 45(1): 89-96. |
| WANG Rui, BEN Jin, DU Lingyu, et al. Code operation scheme for the icosahedral aperture 4 hexagonal grid system[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 89-96. | |
| [28] | 周建彬, 贲进, 王蕊, 等. 四孔六边形全球离散格网一致瓦片层次结构编码运算[J]. 武汉大学学报(信息科学版), 2023, 48(4): 639-646. |
| ZHOU Jianbin, BEN Jin, WANG Rui, et al. Encoding and operation for the aperture 4 hexagonal discrete global grids on uniform tiles[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 639-646. | |
| [29] | VINCE A. Indexing the aperture 3 hexagonal discrete global grid[J]. Journal of Visual Communication and Image Representation, 2006, 17(6): 1227-1236. |
| [30] | SAHR K. Location coding on icosahedral aperture 3 hexagon discrete global grids[J]. Computers, Environment and Urban Systems, 2008, 32(3): 174-187. |
| [31] | 贲进, 李亚路, 周成虎, 等. 三孔六边形全球离散格网系统代数编码方法[J]. 中国科学:地球科学, 2018, 48(3): 340-352. |
| BEN Jin, LI Yalu, ZHOU Chenghu, et al. Algebraic encoding scheme for aperture 3 hexagonal discrete global grid system[J]. Science China Earth Sciences, 2018, 48(3): 340-352. | |
| [32] | MOCNIK F B. A novel identifier scheme for the ISEA aperture 3 hexagon discrete global grid system[J]. Cartography and Geographic Information Science, 2019, 46(3): 277-291. |
| [33] | TECHNOLOGIES U. Introduction | H3[EB/OL]. [2024-09-17]. https://h3geo.org/docs/. |
| [34] | 崔马军, 赵学胜. 球面退化四叉树格网的剖分及变形分析[J]. 地理与地理信息科学, 2007, 23(06): 23-25. |
| CUI Majun, ZHAO Xuesheng. Tessellation and distortion analysis based on spherical DQG[J]. Geography and Geo-Information Science, 2007, 23(6): 23-25. | |
| [35] | 程承旗, 付晨. 地球空间参考网格及应用前景[J]. 地理信息世界, 2014, 21(3): 1-8. |
| CHENG Chengqi, FU Chen. Earth space reference grid and its application prospect[J]. Geomatics World, 2014, 21(3): 1-8. | |
| [36] | GIBB R G. The rHEALPix discrete global grid system[C]//Proceedings of the 9th Symposium of the International Society for Digital Earth. Nova Scotia: IEEE, 2015. |
| [37] | GOOGLE. S2 geometry[EB/OL]. [2024-09-17]. http://s2geometry.io/. |
| [38] | DUTTON G. Planetary modelling via hierarchical tessellation[C]//Proceedings of the 9th International Symposium on Computer-Assisted Cartography. [S.l.]: IEEE, 1989: 462-471. |
| [39] | GOODCHILD M F, SHIREN Y. A hierarchical spatial data structure for global geographic information systems[J]. CVGIP: Graphical Models and Image Processing, 1992, 54(1): 31-44. |
| [40] | OTOO E J, ZHU H. Indexing on spherical surfaces using semi-quadcodes[C]//Proceedings of the 3rd International Symposium on Advances in Spatial Databases. Berlin: Springer, 1993: 510-529. |
| [41] | LEE M, SAMET H. Navigating through triangle meshes implemented as linear quadtrees[J]. ACM Transactions on Graphics, 2000, 19(2): 79-121. |
| [42] | BARTHOLDI J J, GOLDSMAN P. Continuous indexing of hierarchical subdivisions of the globe[J]. International Journal of Geographical Information Science, 2001, 15(6): 489-522. |
| [43] | 赵志鹏. 面向模式计算的球面复合菱形离散网格研究[D]. 南京: 南京师范大学, 2015. |
| ZHAO Zhipeng. Research on spherical composite rhombic discrete mesh for pattern computing[D]. Nanjing: Nanjing Normal University, 2015. | |
| [44] | 刘坤. 基于Fiber Bundle的全球离散格网通用数据模型[D]. 南京: 南京师范大学, 2020. |
| LIU Kun. A universal data model of discrete global grid system based on fiber bundle theory[D]. Nanjing: Nanjing Normal University, 2020. | |
| [45] | 杜灵瑀, 贲进, 马秋禾, 等. 基于弱对偶的平面三角形格网离散线转化生成算法[J]. 武汉大学学报(信息科学版), 2020, 45(1): 105-110. |
| DU Lingyu, BEN Jin, MA Qiuhe, et al. An algorithm for generating discrete line transformation of planar triangular grid based on weak duality[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 105-110. | |
| [46] | MAHDAVI-AMIRI A, ALDERSON T, SAMAVATI F. A survey of digital earth[J]. Computers & Graphics, 2015, 53: 95-117. |
| [47] | 王蕊. 混合孔径六边形全球离散格网系统编码索引的理论与方法[D]. 郑州: 信息工程大学, 2019. |
| WANG Rui. Theory and method of coding index of hexagonal global discrete grid system with mixed aperture[D]. Zhengzhou: Information Engineering University, 2019. | |
| [48] | MAHDAVI-AMIRI A, HARRISON E, SAMAVATI F. Hierarchical grid conversion[J]. Computer-Aided Design, 2016, 79: 12-26. |
| [49] | LIANG X, BEN J, WANG R, et al. Construction of rhombic triacontahedron discrete global grid systems[J]. International Journal of Digital Earth, 2022, 15(1): 1760-1783. |
| [50] | HUANG Xinhai, DAI Jinchi, BEN Jin, et al. Bidirectional mapping between rhombic triacontahedron and icosahedral hexagonal discrete global grid systems[J]. International Journal of Digital Earth, 2024, 17(1): 2324952. |
| [51] | 李德仁, 丁霖, 邵振峰. 关于地理国情监测若干问题的思考[J]. 武汉大学学报(信息科学版), 2016, 41(2): 143-147. |
| LI Deren, DING Lin, SHAO Zhenfeng. Reflections on issues in national geographical conditions monitoring[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 143-147. | |
| [52] | THOMPSON J A, BRODZIK M J, SILVERSTEIN K A T, et al. EASE-DGGS: a hybrid discrete global grid system for Earth sciences[J]. Big Earth Data, 2022, 6(3): 340-357. |
| [53] | SUESS M, MATOS P, GUTIERREZ A, et al. Processing of SMOS level 1C data onto a discrete global grid[C]//Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium. Anchorage: IEEE, 2004: 1914-1917. |
| [54] | PETERSON P. Close-packed uniformly adjacent, multiresolutional overlapping spatial data ordering: US20060265197A1[P]. 2006-02-06. |
| [55] | RISKAWARE. OpenEAGGR[EB/OL]. [2024-09-17]. https://github.com/riskaware-ltd/open-eaggr?tab=readme-ov-file. |
| [56] | SAHR K. DGGRID[EB/OL]. [2024-09-17]. https://github.com/sahrk/DGGRID. |
| [57] | PURSS M B J, PETERSON P R, STROBL P, et al. Datacubes: a discrete global grid systems perspective[J]. Cartographica, 2019, 54(1): 63-71. |
| [58] | GOOGLE. Plus Codes[EB/OL]. [2024-09-17]. https://maps.google.com/pluscodes/. |
| [59] | GIBB R. Scenzgrid-py[EB/OL]. [2024-09-17]. https://github.com/manaakiwhenua/scenzgrid-py/tree/master. |
| [60] | 明涛, 庄大方, 袁文, 等. 几种离散格网模型的几何稳定性分析[J]. 地球信息科学, 2007, 9(4): 40-43, 99. |
| MING Tao, ZHUANG Dafang, YUAN Wen, et al. Comparison of geometrical stability of several discrete grid systems[J]. Geo-Information Science, 2007, 9(4): 40-43, 99. | |
| [61] | KMOCH A, VASILYEV I, VIRRO H, et al. Area and shape distortions in open-source discrete global grid systems[J]. Big Earth Data, 2022, 6(3): 256-275. |
| [62] | WANG Zheng, ZHAO Xuesheng, SUN Wenbin, et al. Correlation analysis and reconstruction of the geometric evaluation indicator system of the discrete global grid[J]. ISPRS International Journal of Geo-Information, 2021, 10(3): 115. |
| [63] | 罗富丽. 基于最优传输理论的球面格网质量整体优化建模研究[D]. 北京: 中国矿业大学(北京), 2022. |
| LUO Fuli. An overall optimization model of the spherical grid based on the optimal transformation theory[D]. Beijing: China University of Mining and Technology-Beijing, 2022. | |
| [64] | YAN Jin, SONG Xiao, GONG Guanghong. Averaged ratio between complementary profiles for evaluating shape distortions of map projections and spherical hierarchical tessellations[J]. Computers & Geosciences, 2016, 87: 41-55. |
| [65] | MOREIRA DE SOUSA L, POGGIO L, KEMPEN B. Comparison of FOSS4G supported equal-area projections using discrete distortion indicatrices[J]. ISPRS International Journal of Geo-Information, 2019, 8(8): 351. |
| [66] | LI M, STEFANAKIS E. Geospatial operations of discrete global grid systems—a comparison with traditional GIS[J]. Journal of Geovisualization and Spatial Analysis, 2020, 4: 26. |
| [67] | 陈军, 王艳慧, 武昊, 等. 时空信息赋能高质量发展的基本问题与发展方向[J]. 时空信息学报, 2023, 30(1): 1-11. |
| CHEN Jun, WANG Yanhui, WU Hao, et al. Basic issues and development directions of high-quality development empowered by spatio-temporal information[J]. Journal of Spatio-Temporal Information, 2023, 30(1): 1-11. | |
| [68] |
陈军, 田海波, 高崟, 等. 实景三维中国的总体架构与主体技术[J]. 测绘学报, 2025, 54(4): 636-649. DOI: .
doi: 10.11947/j.AGCS.2025.20240115 |
|
CHEN Jun, TIAN Haibo, GAO Yin, et al. China's national 3D mapping program (3DRGLM): overall architecture and key technological issues[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 636-649. DOI: .
doi: 10.11947/j.AGCS.2025.20240115 |
|
| [69] | 新华社. “实景三维中国”2030年全面建成[EB/OL]. [2025-04-10]. https://www.gov.cn/lianbo/bumen/202408/content_6971431.htm. |
| Xinhua News Agency. “Real-scene 3D China” to be fully completed by 2030[EB/OL]. [2025-04-10]. https://www.gov.cn/lianbo/bumen/202408/content_6971431.htm. | |
| [70] | 吴立新, 余接情. 基于球体退化八叉树的全球三维网格与变形特征[J]. 地理与地理信息科学, 2009, 25(1): 1-4. |
| WU Lixin, YU Jieqing. Global 3D-grid based on sphere degenerated octree and its distortion features[J]. Geography and Geo-Information Science, 2009, 25(1): 1-4. | |
| [71] | 胡晓光, 程承旗, 童晓冲. 基于GeoSOT-3D的三维数据表达研究[J]. 北京大学学报(自然科学版), 2015, 51(6): 1022-1028. |
| HU Xiaoguang, CHENG Chengqi, TONG Xiaochong. The representation of three-dimensional data based on geo SOT-3D[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(6): 1022-1028. | |
| [72] | 罗东旭, 赵学胜, 张耀元, 等. 一种基于DQG-3D格网的全球与局部编码映射方法[J/OL]. 武汉大学学报(信息科学版), 2022: 1-13. (2022-09-28). https://link.cnki.net/doi/10.13203/j.whugis20220144. |
| LUO Dongxu, ZHAO Xuesheng, ZHANG Yaoyuan, et al. A global and local coding mapping method based on DQG-3D grid[J/OL]. Geomatics and Information Science of Wuhan University, 2022: 1-13. (2022-09-28). https://link.cnki.net/doi/10.13203/j.whugis20220144. | |
| [73] | 康栋贺, 邹自明, 胡晓彦, 等. 支持时空耦合计算的HTM-ST日地空间系统数据组织模型[J]. 地球信息科学学报, 2017, 19(6): 735-743. |
| KANG Donghe, ZOU Ziming, HU Xiaoyan, et al. HTM-ST: a data model supporting spatio-temporal coupled computation for solar-terrestrial system[J]. Journal of Geo-Information Science, 2017, 19(6): 735-743. | |
| [74] | QIAN Chunyao, YI Chao, CHENG Chengqi, et al. GeoSOT-based spatiotemporal index of massive trajectory data[J]. ISPRS International Journal of Geo-Information, 2019, 8(6): 284. |
| [75] |
童晓冲, 王嵘, 王林, 等. 一种有效的多尺度时间段剖分方法与整数编码计算[J]. 测绘学报, 2016, 45(): 66-76. DOI: .
doi: 10.11947/j.AGCS.2016.F008 |
|
TONG Xiaochong, WANG Rong, WANG Lin, et al. An efficient integer coding and computing method for multiscale time segment[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(): 66-76. DOI: .
doi: 10.11947/j.AGCS.2016.F008 |
| [1] | TAN Shusen, ZHANG Tianqiao. Progress and evolution of contemporary GNSS [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1114-1118. |
| [2] | YANG Yuanxi, LU Mingquan, HAN Chunhao. Some Notes on Interoperability of GNSS [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 253-259. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||