[1] TEUNISSENP J G, JONGEP J D, TIBERIUSC C J M. The Least-squares Ambiguity Decorrelation Adjustment: A Method for Fast GPS Integer Ambiguity Estimation[J]. Journal of Geodesy, 1995, 70(1): 65-82. [2] TEUNISSENP J G. A New Method for Fast Carrier Phase Ambiguity Estimation[C]//Proceedings of the IEEE PLANS'94. Las Vegas: [s.n.], 1994. [3] LIU L T, HSU H T, ZHU Y Z, et al. A New Approach to GPS Ambiguity Decorrelation[J]. Journal of Geodesy, 1999, 73(1): 478-490. [4] XU P L. Random Simulation and GPS Decorrelation[J]. Journal of Geodesy, 2001, 75(1): 408-423. [5] XU P L. Parallel Cholesky-based Reduction for the Weighted Integer Least Squares Problem[J]. Journal of Geodesy, 2012, 86(1): 35-52. [6] CHANG X W, YANG X, ZHOU T. MLAMBDA: A Modified LAMBDA Method for Integer Least-squares Estimation[J]. Journal of Geodesy, 2005, 79(9): 552-565. [7] ZHOU Y M. A New Practical Approach to GNSS High-dimensional Ambiguity Decorrelation[J]. GPS Solutions, 2011, 15(1): 325-331. [8] LIU Ning, XIONG Yongliang, FENG Wei, et al. An Algorithm for Rapid Integer Ambiguity Resolution in Single Frequency GPS Kinematical Positioning[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2): 211-217. (刘宁, 熊永良, 冯威, 等. 单频GPS动态定位中整周模糊度的一种快速解算方法[J]. 测绘学报, 2013, 42(2): 211-217.) [9] ZHOU Yangmei, LIU Jingnan, LIU Jiyu. Return-calculating LAMBDA Approach and Its Search Space[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(4): 300-304. (周扬眉, 刘经南, 刘基余. 回代解算的LAMBDA方法及其搜索空间[J]. 测绘学报, 2005, 34(4): 300-304.) [10] LENSTR A K, LENSTRA H W, LOVASZ L. Factoring Polynomials with Rational Coefficients[J]. Mathematische Annalen, 1982, 261(4): 515-534. [11] YU Xingwang. Multi-frequency GNSS Precise Positioning Theory and Method Research[D]. Wuhan: Wuhan University, 2011. (于兴旺. 多频GNSS精密定位理论与方法研究[D]. 武汉: 武汉大学, 2011.) [12] JAZAERI S, AMIRI-SIMKOOEI A R, SHARIFI M A. On Lattice Reduction Algorithms for Solving Weighted Integer Least Squares Problems: Comparative Study[J]. GPS Solutions, 2014, 18(1): 105-114. [13] BORNO M A, CHANG X W, XIE X. On “Decorrelation” in Solving Integer Least-squares Problems for Ambiguity Determination[J]. Survey Review, 2014, 46: 37-49. [14] HASSIBI A, BOYD S. Integer Parameter Estimation in Linear Models with Applications to GPS[J]. IEEE Transactions on Signal Processing, 1998, 46(11): 2938-2952. [15] GRAFAREND E W. Mixed Integer-real Valued Adjustment(IRA) Problems: GPS Initial Cycle Ambiguity Resolution by Means of the LLL Algorithm[J]. GPS Solutions, 2000, 4(2): 31-43. [16] FAN Long, ZHAI Guojun, CHAI Hongzhou. Ambiguity Decorrelation Algorithm with Integer Block Orthogonalization[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8): 818-826. (范龙, 翟国君, 柴洪洲. 模糊度降相关的整数分块正交化算法[J]. 测绘学报, 2014, 43(8): 818-826.) [17] LIU Zhiping, HE Xiufeng. An Improved LLL Algorithm for GPS Ambiguity Solution[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(3): 286-289. (刘志平, 何秀凤. 改进的GPS模糊度降相关LLL算法[J]. 测绘学报, 2007, 36(3): 286-289.) [18] LIU Jingnan, YU Xingwang, ZHANG Xiaohong. GNSS Ambiguity Resolution Using Lattice Theory[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5): 636-645. (刘经南, 于兴旺, 张小红. 基于格论的GNSS模糊度解算[J]. 测绘学报, 2012, 41(5): 636-645.) [19] LANNES A. On the Theoretical Link between LLL-reduction and LAMBDA Decorrelation[J]. Journal of Geodesy, 2013, 87(4): 323-335. [20] SEYSEN M. Simultaneous Reduction of a Lattice Basis and Its Reciprocal Basis[J].Combinatorica, 1993, 13(3): 262-376. [21] LU Liguo. The Research and Analysis Based on Sphere Search for Ambiguity on Reduction[D]. Wuhan: Wuhan University, 2013. (卢立果. 基于球形搜索的模糊度格基规约方法研究与分析[D]. 武汉: 武汉大学: 2013.) [22] WANG J, FENG Y M. Orthogonality Defect and Reduced Search-space Size for Solving Integer Least-squares Problems[J]. GPS Solutions, 2013, 17(1): 261-274. [23] GOLUB G H, VAN LOANC F. Matrix Computations[M]. YUAN Yaxiang, trans. Beijing: Science Press, 2001. (戈卢布 G H,范洛恩 C F. 矩阵计算[M]. 袁亚湘, 译. 北京: 科学出版社, 2001.) [24] TEUNISSEN P J G. Success Probability of Integer GPS Ambiguity Rounding and Bootstrapping[J]. Journal of Geodesy, 1998, 72(10): 606-612. |