[1] LUO Zhicai. The Theory and Method for the Determination of Earth Gravity Field from Satellite Gravity Gradient Data[D]. Wuhan: Wuhan Technical University of Surveying and Mapping, 1996. (罗志才. 利用卫星重力梯度数据确定地球重力场的理论和方法[D]. 武汉: 武汉测绘科技大学, 1996.) [2] HIRT C, KUHN M, FEATHERSTONE W E, et al. Topographic/Isostatic Evaluation of New-generation GOCE Gravity Field Models[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 2012, 117(B5), DOI: 10.1029/2011JB008878. [3] EBBING J, BOUMAN J, FUCHS M, et al. Sensitivity of GOCE Gravity Gradients to Crustal Thickness and Density Variations: Case Study for the Northeast Atlantic Region[M]// MARTI U. Gravity, Geoid and Height Systems. Berlin: Springer, 2014: 291-298. [4] EVERTON P B. Ouso dos Dados da Missāo GOCE Para a Caracterizaçāo ea Investigaçāo das Implicaçoes na Estrutura de Densidade das Bacias Sedimentares do Amazonas e Solimoes, Brasil[D]. Sāo Paulo: Universidade de Sāo Paulo, 2012. [5] ÁLVAREZ O, GIMENEZ M, BRAITENBERG C, et al. GOCE Satellite Derived Gravity and Gravity Gradient Corrected for Topographic Effect in the South Central Andes Region[J]. Geophysical Journal International, 2012, 190(2): 941-959. [6] REGUZZONI M, SAMPIETRO D. Moho Estimation Using GOCE Data: A Numerical Simulation[M]// KENYON S, PACINO M C, MARTI U. Geodesy for Planet Earth. Berlin: Springer, 2012: 205-214. [7] YANG Ting, FU Rongshan, HUANG Jinshui. On the Inversion of Effective Elastic Thickness of the Lithosphere with Moho Relief and Topography Data[J]. Chinese Journal of Geophysics, 2012, 55(11): 3671-3680. (杨亭, 傅容珊, 黄金水. 利用 Moho 面起伏及地表地形数据反演岩石圈有效弹性厚度的莫霍地形导纳法 (MDDF)[J]. 地球物理学报, 2012, 55(11): 3671-3680.) [8] KE Xiaoping, WANG Yong, XU Houze. Moho Depths Inversion of Qinghai-Tibet Plateau with Variable Density Model[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4): 289-292. (柯小平, 王勇, 许厚泽. 用变密度模型反演青藏高原的莫霍面深度[J]. 武汉大学学报: 信息科学版, 2006, 31(4): 289-292.) [9] XING Lelin, SUN Wenke, LI Hui, et al. Present-day Crust Thickness Increasing Beneath the Qinghai-Tibetan Plateau by Using Geodetic Data at Lhasa Station[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1): 41-44. (邢乐林, 孙文科, 李辉, 等. 用拉萨点大地测量资料检测青藏高原地壳的增厚[J]. 测绘学报, 2011, 40(1): 41-44.) [10] ZHANG Chijun, REN Kang. The Undulation between Core and Mantle of Earth from Disturbing Potential[J]. Chinese Journal of Geophysics, 1994, 37(1): 115-119. (张赤军, 任康. 由扰动位确定核幔起伏[J]. 地球物理学报, 1994, 37(1): 115-119.) [11] FANG Jian. Global Crustal and Lithospheric Thickness Inversed by Using Satellite Gravity Data[J]. Crustal Deformation and Earthquake, 1999, 19(1): 26-31. (方剑. 利用卫星重力资料反演地壳及岩石圈厚度[J]. 地壳形变与地震, 1999, 19(1): 26-31.) [12] SHIN Y H, XU H Z, BRAITENBERG C, et al. Moho Undulations beneath Tibet from GRACE-integrated Gravity Data[J]. Geophysical Journal International, 2007, 170(3): 971-985. [13] HU Minzhang, LI Jiancheng, XING Lelin. Global Bathymetry Model Predicted from Vertical Gravity Gradient Anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6): 558-574. (胡敏章, 李建成, 邢乐林. 由垂直重力梯度异常反演全球海底地形模型[J]. 测绘学报, 2014, 43(6): 558-574.) [14] LIANG Q, CHEN C, LI Y G. 3D Inversion of Gravity Data in Spherical Coordinates with Application to the GRAIL Data[J]. Journal of Geophysical Research: Planets, 2014, 119(6): 1359-1373. [15] TENZER R, BAGHERBANDI M. Reformulation of the Vening Meinesz-Moritz Inverse Problem of Isostasy for Isostatic Gravity Disturbances[J]. International Journal of Geosciences, 2012, 3(5A): 918-929. [16] WANG Hansheng, CHENXue, YANGHongzhi. An Iterative Method for Inversion of Deep Large-scale Single Density Interface by Using Gravity Anomaly Data[J]. Chinese Journal of Geophysics, 1993, 36(5): 643-650. (汪汉胜, 陈雪, 杨洪之. 深部大尺度单一密度界面重力异常迭代反演[J]. 地球物理学报, 1993, 36(5): 643-650.) [17] SJÖBERG L E. Solving Vening Meinesz-Moritz Inverse Problem in Isostasy[J]. Geophysical Journal International, 2009, 179(3): 1527-1536. [18] SJÖBERG L E. On the Isostatic Gravity Anomaly and Disturbance and Their Applications to Vening Meinesz-Moritz Gravimetric Inverse Problem[J]. Geophysical Journal International, 2013, 193(3): 1277-1282. [19] GROMBEIN T, SEITZ K, HECK B. Untersuchungen zur Effizienten Berechnung Topographischer Effekte auf den Gradiententensor am Fallbeispiel der Satellitengradiometriemission GOCE[M]. [S.l.]: KIT Scientific Publishing, 2010. [20] WILD F, HECK B. Topographic and Isostatic Reductions for Use in Satellite Gravity Gradiometry[C]// XU P L, LIU J N, DERMANIS A. VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy. Berlin: Springer, 2008: 49-55. [21] NOVÁK P, GRAFAREND E W. The Effect of Topographical and Atmospheric Masses on Spaceborne Gravimetric and Radiometric Data[J]. Studia Geophysica et Geodaetica, 2006, 50(4): 549-582. [22] TENZER R, HAMAYUN K, VAJDA P. Global Maps of the CRUST 2.0 Crustal Components Stripped Gravity Disturbances[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 2009, 114(B5), DOI: 10. 1029/2008 JB006016. [23] TENZER R, HAMAYUN, NOVÁK P, et al. Global Crust-Mantle Density Contrast Estimated from EGM2008, DTM2008, CRUST2. 0, and ICE-5G[J]. Pure and Applied Geophysics, 2012, 169(9): 1663-1678. [24] LASKE G, MASTERS G, MA Z T, et al. Update on CRUST1.0-A 1-degree Global Model of Earth’s Crust[C]// Proceedings of EGU General Assembly Conference Abstracts. Vienna, Austria: [s.n.], 2013: 15-26. [25] BAGHERBANDI M, SJBERG L E. Non-isostatic Effects on Crustal Thickness: A Study Using CRUST2.0 in Fennoscandia[J]. Physics of the Earth and Planetary Interiors, 2012, 200-201(1): 37-44. [26] REGUZZONI M, SAMPIETRO D. Moho Estimation Using GOCE Data: A Numerical Simulation[M]// KENYON S, PACINO M C, MARTI U. Geodesy for Planet Earth. Berlin: Springer, 2012: 205-214. [27] AMANTE C, EAKINS B W. ETOPO1 1 Arc-minute Global Relief Model: Procedures, Data Sources and Analysis[R]. National Geophysical Data Center. Washington D C: NOAA, 2009. [28] ZHU L Z. Gradient Modelling with Gravity and DEM[D]. Columbus, Ohio: The Ohio State University, 2007. [29] TSOULIS D. A Comparison between the Airy/Heiskanen and the Pratt/Hayford Isostatic Models for the Computation of Potential Harmonic Coefficients[J]. Journal of Geodesy, 2001, 74(9): 637-643. [30] MAYER-GVRR T, The GOCO Consortium: The New Combined Satellite only Model GOCO03s[J]. Journal of Geodesy, 2012,87(9): 843-867. |