Acta Geodaetica et Cartographica Sinica ›› 2017, Vol. 46 ›› Issue (2): 170-178.doi: 10.11947/j.AGCS.2017.20160272
Previous Articles Next Articles
JIA Lulu1,2, WANG Hansheng2, XIANG Longwei2
Received:
2016-06-02
Revised:
2016-10-10
Online:
2017-02-20
Published:
2017-03-07
Supported by:
CLC Number:
JIA Lulu, WANG Hansheng, XIANG Longwei. Measuring Terrestrial Water Storage Change Using GRACE, GPS and Absolute Gravity Data in Scandinavia[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 170-178.
[1] POKHREL Y N, HANASAKI N, YEH P J F, et al. Model Estimates of Sea-level Change due to Anthropogenic Impacts on Terrestrial Water Storage[J]. Nature Geoscience, 2012, 5(6):389-392. [2] RODELL M, VELICOGNA I, FAMIGLITTI J S. Satellite-based Estimates of Groundwater Depletion in India[J]. Nature, 2009, 460(7258):999-1002. [3] WAHR J, SWENSON S, ZLOTNICKI V, et al. Time-variable Gravity from GRACE:First Results[J]. Geophysical Research Letters, 2004, 31(11):L11501. [4] 汪汉胜, 王志勇, 袁旭东, 等. 基于GRACE时变重力场的三峡水库补给水系水储量变化[J]. 地球物理学报, 2007, 50(3):730-736. WANG Hansheng, WANG Zhiyong, YUAN Xudong, et al. Water Storage Changes in Three Gorges Water Systems Area Inferred from GRACE Time-variable Gravity Data[J]. Chinese Journal of Geophysics, 2007, 50(3):730-736. [5] FENG Wei, ZHONG Min, LEMOINE J M, et al. Evaluation of Groundwater Depletion in North China Using the Gravity Recovery and Climate Experiment (GRACE) Data and Ground-based Measurements[J]. Water Resources Research, 2013, 49(4):2110-2118. [6] 卢飞, 游为, 范东明, 等. 由GRACE RL05数据反演近10年中国大陆水储量及海水质量变化[J]. 测绘学报, 2015, 44(2):160-167. DOI:10.11947/j.AGCS.2015.20130753. LU Fei, YOU Wei, FAN Dongming, et al. Chinese Continental Water Storage and Ocean Water Mass Variations Analysis in Recent Ten Years Based on GEACE RL05 Data[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2):160-167. DOI:10.11947/j.AGCS.2015.20130753. [7] 文汉江, 黄振威, 王友雷, 等. 青藏高原及其周边地区水储量变化的独立成分分析[J]. 测绘学报, 2016, 45(1):9-15. DOI:10.11947/j.AGCS.2016.20140447. WEN Hanjiang, HUANG Zhenwei, WANG Youlei, et al. Independent Component Analysis of Water Storage Changes Interpretation over Tibetan Plateau and Its Surrounding Areas[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1):9-15. DOI:10.11947/j.AGCS.2016.20140447. [8] 罗志才, 李琼, 钟波. 利用GRACE时变重力场反演黑河流域水储量变化[J]. 测绘学报, 2012, 41(5):676-681. LUO Zhicai, LI Qiong, ZHONG Bo. Water Storage Variations in Heihe River Basin Recovered from GRACE Temporal Gravity Field[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5):676-681. [9] LETTENMAIER D P, FAMIGLIETTI J S. Hydrology:Water from on High[J]. Nature, 2006, 444(7119):562-563. [10] MORROW E, MITROVICA J X, FOTOPOULOS G. Water Storage, Net Precipitation, and Evapotranspiration in the Mackenzie River Basin from October 2002 to September 2009 Inferred from GRACE Satellite Gravity Data[J]. Journal of Hydrometeorology, 2011, 12(3):467-473. [11] PELTIER W R. Global Glacial Isostasy and the Surface of the Ice-age Earth:The ICE-5G (VM2) Model and GRACE[J]. Annual Review of Earth and Planetary Sciences, 2004, 32:111-149. [12] WANG Hansheng, JIA Lulu, STEFFEN H, et al. Increased Water Storage in North America and Scandinavia from GRACE Gravity Data[J]. Nature Geoscience, 2013, 6(1):38-42. [13] WAHR J, HAN Dazhong, TRUPIN A. Predictions of Vertical Uplift Caused by Changing Polar Ice Volumes on a Viscoelastic Earth[J]. Geophysical Research Letters, 1995, 22(8):977-980. [14] LAMBERT A, HUANG J, VAN DER KAMP G, et al. Measuring Water Accumulation Rates Using GRACE Data in Areas Experiencing Glacial Isostatic Adjustment:The Nelson River Basin[J]. Geophysical Research Letters, 2013, 40(23):6118-6122. [15] DAHLE C, FLECHTNER F, GRUBER C, et al. GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005[R]. Potsdam:Deutsches Geo Forschungs Zentrum GFZ, 2012. [16] 汪汉胜, 贾路路, WU P, 等. 冰川均衡调整对东亚重力和海平面变化的影响[J]. 地球物理学报, 2010, 53(11):2590-2602. WANG Hansheng, JIA Lulu, WU P, et al. Effects of Global Glacial Isostatic Adjustment on the Secular Changes of Gravity and Sea Level in East Asia[J]. Chinese Journal of Geophysics, 2010, 53(11):2590-2602. [17] MAZZOTTI S, LAMBERT A, COURTIER N, et al. Crustal Uplift and Sea Level Rise in Northern Cascadia from GPS, Absolute Gravity, and Tide Gauge Data[J]. Geophysical Research Letters, 2007, 34(15):L15306. [18] MAZZOTTI S, LAMBERT A, HENTON J, et al. Absolute Gravity Calibration of GPS Velocities and Glacial Isostatic Adjustment in Mid-continent North America[J]. Geophysical Research Letters, 2011, 38(24):L24311. [19] STEFFEN H, GITLEIN O, DENKER H, et al. Present Rate of Uplift in Fennoscandia from GRACE and Absolute Gravimetry[J]. Tectonophysics, 2009, 474(1-2):69-77. [20] MVLLER J, NAEIMI M, GITLEIN O, et al. A Land Uplift Model in Fennoscandia Combining GRACE and Absolute Gravimetry Data[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2012, 53-54:54-60. [21] JOHANSSON J M, DAVIS J L, SCHERNECK H G, et al. Continuous GPS Measurements of Postglacial Adjustment in Fennoscandia 1. Geodetic Results[J]. Journal of Geophysical Research, 2002, 107(B8):2157. [22] LIDBERG M, JOHANSSON J M, SCHERNECK H G, et al. An Improved and Extended GPS-derived 3D Velocity Field of the Glacial Isostatic Adjustment (GIA) in Fennos-candia[J]. Journal of Geodesy, 2007, 81(3):213-230. [23] LIDBERG M, JOHANSSON J M, SCHERNECK H G, et al. Recent Results Based on Continuous GPS Observations of the GIA Process in Fennoscandia from BIFROST[J]. Journal of Geodynamics, 2010, 50(1):8-18. [24] WAHR J, MOLENAAR M, BRYAN F. Time Variability of the Earth's Gravity Field:Hydrological and Oceanic Effects and Their Possible Detection Using GRACE[J]. Journal of Geophysical Research, 1998, 103(B12):30205-30229. [25] WANG Hansheng, WU P, WANG Zhiyong. An Approach for Spherical Harmonic Analysis of Non-smooth Data[J]. Computers & Geosciences, 2006, 32(10):1654-1668. [26] 汪汉胜, 许厚泽, 李国营. SNREI地球模型负荷勒夫数数值计算的新进展[J]. 地球物理学报, 1996, 39(S1):182-189. WANG Hansheng, XU Houze, LI Guoying. Improvement of Computations of Load Love Numbers of SNREI Earth Model[J]. Chinese Journal of Geophysics, 1996, 39(S1):182-189. [27] 鞠晓蕾, 沈云中, 张子占. 基于GRACE卫星RL05数据的南极冰盖质量变化分析[J]. 地球物理学报, 2013, 56(9):2918-2927. JU Xiaolei, SHEN Yunzhong, ZHANG Zizhan. Antarctic Ice Mass Change Analysis Based on GRACE RL05 Data[J]. Chinese Journal of Geophysics, 2013, 56(9):2918-2927. [28] CHENG Minkang, TAPLEY B D. Variations in the Earth's Oblateness During the Past 28 Years[J]. Journal of Geophysical Research, 2004, 109(B9):B09402. [29] SWENSON S, CHAMBERS D, WAHR J. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output[J]. Journal of Geophysical Research, 2008, 113(B8):B08410. [30] 贾路路, 汪汉胜, 相龙伟, 等. 冰川均衡调整对南极冰质量平衡监测的影响及其不确定性[J]. 地球物理学报, 2011, 54(6):1466-1477. JIA Lulu, WANG Hansheng, XIANG Longwei, et al. Effects of Glacial Isostatic Adjustment on the Estimate of Ice Mass Balance over Antarctica and the Uncertainties[J]. Chinese Journal of Geophysics, 2011, 54(6):1466-1477. [31] CHAMBERS D P. Evaluation of New GRACE Time-variable Gravity Data over the Ocean[J]. Geophysical Research Letters, 2006, 33(17):L17603. [32] STEFFEN H, WU P, WANG Hansheng. Determination of the Earth's Structure in Fennoscandia from GRACE and Implications for the Optimal Post-processing of GRACE Data[J]. Geophysical Journal International, 2010, 182(3):1295-1310. [33] PETTERSEN B R. The Postglacial Rebound Signal of Fennoscandia Observed by Absolute Gravimetry, GPS, and Tide Gauges[J]. International Journal of Geophysics, 2011:957329. [34] JAMES T S, IVINS E R. Present-day Antarctic Ice Mass Changes and Crustal Motion[J]. Geophysical Research Letters, 1995, 22(8):973-976. [35] FANG M, HAGER B H. Vertical Deformation and Absolute Gravity[J]. Geophysical Journal International, 2001, 146(2):539-548. [36] 贾路路, 汪汉胜, 相龙伟. 冰川均衡调整重力与径向位移近似关系的不确定性[J]. 地球科学:中国地质大学学报, 2014, 39(7):905-914. JIA Lulu, WANG Hansheng, XIANG Longwei. Uncertainty of Approximate Relationship between GIA Induced Viscous Gravity and Radial Displacement[J]. Earth Science-Journal of China University of Geosciences, 2014, 39(7):905-914. [37] MILNE G A, DAVIS J L, MITROVICA J X, et al. Space-geodetic Constraints on Glacial Isostatic Adjustment in Fennoscandia[J]. Science, 2001, 291(5512):2381-2385. [38] LAMBECK K, PURCELL A, ZHAO J, et al. The Scandinavian Ice Sheet:From MIS 4 to the End of the Last Glacial Maximum[J]. BOREAS, 2010, 39(2):410-435. [39] RODELL M, HOUSER P R, JAMBOR U, et al. The Global Land Data Assimilation System[J]. Bulletin of the American Meteorological Society, 2004, 85(3):381-394. [40] DÖLL P, KASPAR F, LEHNER B. A Global Hydrological Model for Deriving Water Availability Indicators:Model Tuning and Validation[J]. Journal of Hydrology, 2003, 270(1-2):105-134. |
[1] | ZHANG Lin, SHEN Yunzhong, CHEN Qiujie, WANG Fengwei. Analysis of terrestrial water storage change and its driving factors of Hongliu River region [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 622-630. |
[2] | XU Longwei, WU Zhongwang, DONG Xurong. A real-time estimating algorithm of GLONASS inter-frequency code bias and its application in RTK [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 169-181. |
[3] | SHAO Kai, YI Bin, ZHANG Houzhe, GU Defeng. Integer phase clock method with single-satellite ambiguity fixing and its application in LEO satellite orbit determination [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 487-495. |
[4] | LIU Han, WEI Hui, ZOU Xiancai. Precise GNSS phase velocity determination for GRACE Follow-On satellites [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1772-1779. |
[5] | ZHAO Jing, ZHAN Wei, REN Jinwei, JIANG Zaisen, GU Tie, LIU Jie, NIU Anfu, YUAN Zhengyi. GPS time series inversion of the healing process of the middle segment of the Longmenshan fault after the 2008 Wenchuan earthquake [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 37-51. |
[6] | ZHOU Feng, XU Tianhe. Modeling and assessment of GPS/BDS/Galileo triple-frequency precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 61-70. |
[7] | LIANG Yueji, REN Chao, HUANG Yibang, PAN Yalong, ZHANG Zhigang. Multi-star linear regression retrieval model for monitoring soil moisture using GPS-IR [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 833-842. |
[8] | ZHU Huizhong, LI Jun, YU Zeran, ZHANG Kai, XU Aigong. The algorithm of multi-frequency carrier phase integer ambiguity resolution with GPS/BDS between long range network RTK reference stations [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 300-311. |
[9] | HE Zhenyu, CHEN Wu, YANG Yang. GPS-based space-surface passive bistatic radar technique for maritime moving target detection [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1523-1534. |
[10] | QIN Yikun, WANG Zegen, FAN Dongming. The joint inversion of regional water reserve changes in the Qinghai-Tibet Plateau based on GRACE RL06 and TRMM data [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1285-1294. |
[11] | ZHAO Hongbin, GU Yanchao, FAN Dongming, QIU Chunhong, SU Chunpeng, FANG Weihao. Seasonal sea level variations in the Red Sea inferred from satellite altimetry, GRACE and temperature and salinity data [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1119-1128. |
[12] | YAO Chaolong, LUO Zhicai, HU Yueming, WANG Changwei, ZHANG Rui, LI Jinming. Detecting droughts in Southwest China from GPS vertical position displacements [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5): 547-554. |
[13] | TANG Luliang, DAI Ling, REN Chang, ZHANG Xia. Spatio-temporal modeling of city events combining datasets in cyberspace and real space [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5): 618-629. |
[14] | WU Qunyong, WU Zufei, ZHANG Liangpan. GPS trajectory agglomeration and refined road network extraction [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4): 502-511. |
[15] | TANG Luliang, KAN Zihan, REN Chang, ZHANG Xia, LI Qingquan. Fine-grained analysis of traffic congestions at the turning level using GPS traces [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 75-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||