Acta Geodaetica et Cartographica Sinica ›› 2019, Vol. 48 ›› Issue (10): 1285-1295.doi: 10.11947/j.AGCS.2019.20180393
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
DONG Zhipeng1, WANG Mi1,2, LI Deren1,2, WANG Yanli1, ZHANG Zhiqi1
Received:
2018-08-20
Revised:
2019-01-20
Online:
2019-10-20
Published:
2019-10-24
Supported by:
CLC Number:
DONG Zhipeng, WANG Mi, LI Deren, WANG Yanli, ZHANG Zhiqi. Object detection in remote sensing imagery based on convolutional neural networks with suitable scale features[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1285-1295.
[1] | 李德仁, 王密, 沈欣, 等. 从对地观测卫星到对地观测脑[J]. 武汉大学学报(信息科学版), 2017, 42(2):143-149. LI Deren, WANG Mi, SHEN Xin, et al. From earth observation satellite to earth observation brain[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2):143-149. |
[2] | 董志鹏, 王密, 李德仁. 一种融合超像素与最小生成树的高分辨率遥感影像分割方法[J]. 测绘学报, 2017, 46(6):734-742. DOI:10.11947/j.AGCS.2017.20160514. DONG Zhipeng, WANG Mi, LI Deren. A high resolution remote sensing image segmentation method by combining superpixels with minimum spanning tree[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6):734-742. DOI:10.11947/j.AGCS.2017.20160514. |
[3] | 刘婧, 李培军. 结合结构和光谱特征的高分辨率影像分割方法[J]. 测绘学报, 2014, 43(5):466-473. DOI:10.13485/j.cnki.11-2089.2014.0087. LIU Jing, LI Peijun. A high resolution image segmentation method by combined structural and spectral characteristics[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(5):466-473. DOI:10.13485/j.cnki.11-2089.2014.0087. |
[4] | 高常鑫, 桑农. 基于深度学习的高分辨率遥感影像目标检测[J]. 测绘通报, 2014(S1):108-111. DOI:10.13474/j.cnki.11-2246.2014.0625. GAO Changxin, SANG Nong. Deep learning for object detection in remote sensing image[J]. Bulletin of Surveying and Mapping, 2014(S1):108-111. DOI:10.13474/j.cnki.11-2246.2014.0625. |
[5] | CHENG Gong, HAN Junwei, GUO Lei, et al. Object detection in remote sensing imagery using a discriminatively trained mixture model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85(11):32-43. |
[6] | 张剑清, 佘琼, 潘励. 基于LBP/C纹理的遥感影像居民地变化检测[J]. 武汉大学学报(信息科学版), 2008, 33(1):7-11. ZHANG Jianqing, SHE Qiong, PAN Li. Change detection of residential area by remote sensing image based on LBP/C texture[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1):7-11. |
[7] | MORANDUZZO T, MELGANI F, DAAMOUCHE A. An object detection technique for very high resolution remote sensing images[C]//Proceedings of the 8th IEEE International Workshop on Systems, Signal Processing and Their Applications. Algiers, Algeria:IEEE, 2013:79-83. |
[8] | BRENNING A, LONG Shilei, FIEGUTH P. Detecting rock glacier flow structures using Gabor filters and IKONOS imagery[J]. Remote Sensing of Environment, 2012, 125(10):227-237. |
[9] | DOU Peng, CHEN Yangbo, YUE Haiyun. Remote-sensing imagery classification using multiple classification algorithm-based AdaBoost[J]. International Journal of Remote Sensing, 2018, 39(3):619-639. |
[10] | YANG Guang, FANG Shenghui. Improving remote sensing image classification by exploiting adaptive features and hierarchical hybrid decision trees[J]. Remote Sensing Letters, 2017, 8(2):156-164. |
[11] | 曲景影, 孙显, 高鑫. 基于CNN模型的高分辨率遥感图像目标识别[J]. 国外电子测量技术, 2016, 35(8):45-50. QU Jingying, SUN Xian, GAO Xin. Remote sensing image target recognition based on CNN[J]. Foreign Electronic Measurement Technology, 2016, 35(8):45-50. |
[12] | 卢艺帆, 张松海. 基于卷积神经网络的光学遥感图像目标检测[J]. 中国科技论文, 2017, 12(14):1583-1589, 1633. LU Yifan, ZHANG Songhai. Object detection in optical remote sensing images with convolutional neural networks[J]. China Sciencepaper, 2017, 12(14):1583-1589, 1633. |
[13] | 何海威, 钱海忠, 谢丽敏, 等. 立交桥识别的CNN卷积神经网络法[J]. 测绘学报, 2018, 47(3):385-395. DOI:10.11947/j.AGCS.2018.20170265. HE Haiwei, QIAN Haizhong, XIE Limin, et al. Interchange recognition method based on CNN[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3):385-395. DOI:10.11947/j.AGCS.2018.20170265. |
[14] | 郑卓, 方芳, 刘袁缘, 等. 高分辨率遥感影像场景的多尺度神经网络分类法[J]. 测绘学报, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191. ZHENG Zhuo, FANG Fang, LIU Yuanyuan, et al. Joint multi-scale convolution neural network for scene classification of high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191. |
[15] | 伍广明, 陈奇, SHIBASAKI R, 等. 基于U型卷积神经网络的航空影像建筑物检测[J]. 测绘学报, 2018, 47(6):864-872. DOI:10.11947/j.AGCS.2018.20170651. WU Guangming, CHEN Qi, SHIBASAKI R, et al. High precision building detection from aerial imagery using a U-Net like convolutional architecture[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):864-872. DOI:10.11947/j.AGCS.2018.20170651. |
[16] | 戴玉超, 张静, PORIKLI F, 等. 深度残差网络的多光谱遥感图像显著目标检测[J]. 测绘学报, 2018, 47(6):873-881. DOI:10.11947/j.AGCS.2018.20170633. DAI Yuchao, ZHANG Jing, PORIKLI F, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):873-881. DOI:10.11947/j.AGCS.2018.20170633. |
[17] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1):142-158. |
[18] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916. |
[19] | GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015:1440-1448. |
[20] | REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. |
[21] | 温奇, 李苓苓, 刘庆杰, 等. 基于视觉显著性和图分割的高分辨率遥感影像中人工目标区域提取[J]. 测绘学报, 2013, 42(6):831-837. WEN Qi, LI Lingling, LIU Qingjie, et al. A man-made object area extraction method based on visual saliency detection and graph-cut segmentation for high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6):831-837. |
[22] | 沈佳洁, 潘励, 胡翔云. 可变形部件模型在高分辨率遥感影像建筑物检测中的应用[J]. 武汉大学学报(信息科学版), 2017, 42(9):1285-1291. SHEN Jiajie, PAN Li, HU Xiangyun. Building detection from high resolution remote sensing imagery based on a deformable part model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1285-1291. |
[23] | ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland:Springer, 2014:818-833. |
[24] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego, California:[s.n.], 2015. |
[25] | EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The Pascal visual object classes challenge:a retrospective[J]. International Journal of Computer Vision, 2015, 111(1):98-136. |
[1] | ZHANG Liangpei, HE Jiang, YANG Qianqian, XIAO Yi, YUAN Qiangqiang. Data-driven multi-source remote sensing data fusion: progress and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337. |
[2] | CHENG Tao, ZHANG Yang, James Haworth. Network and graph-based SpaceTimeAI: conception, method and applications [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1629-1639. |
[3] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[4] | ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. |
[5] | GONG Jianya, ZHANG Mi, HU Xiangyun, ZHANG Zhan, LI Yansheng, Jiang Liangcun. The design of deep learning framework and model for intelligent remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475-487. |
[6] | MAO Wenjing, WANG Weilin, JIAO Limin, LIU Anbao. Continuous spatial coverage PM2.5 concentration forecast in China based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 361-372. |
[7] | JIN Fei, GUAN Kai, LIU Zhi, HAN Jiarong, RUI Jie, LI Qinggao. A performing analysis of unsupervised dense matching feature extraction networks [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 426-436. |
[8] | HE Zhimeng, DING Haiyong, AN Bingqi. E-Unet: a atrous convolution-based neural network for building extraction from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 457-467. |
[9] | ZHANG Yuxin, YAN Qingsong, DENG Fei. Multi-path RSU network method for high-resolution remote sensing image building extraction [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 135-144. |
[10] | ZHANG Yongsheng, ZHANG Zhenchao, TONG Xiaochong, JI Song, YU Ying, LAI Guangling. Progress and challenges of geospatial artificial intelligence [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1137-1146. |
[11] | AI Tinghua. Some thoughts on deep learning enabling cartography [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1170-1182. |
[12] | GONG Jianya, XU Yue, HU Xiangyun, JIANG Liangcun, ZHANG Mi. Status analysis and research of sample database for intelligent interpretation of remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1013-1022. |
[13] | YANG Bisheng, HAN Xu, DONG Zhen. A deep learning network for semantic labeling of large-scale urban point clouds [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1059-1067. |
[14] | TAO Chao, YIN Ziwei, ZHU Qing, LI Haifeng. Remote sensing image intelligent interpretation: from supervised learning to self-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1122-1134. |
[15] | YANG Qiulian, LIU Yanfei, DING Lele, MENG Fanxiao. High spatial resolution imagery scene classification based on semi-supervised CNNs [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 930-938. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||