[1] 黄鸿, 郑新磊. 高光谱影像空-谱协同嵌入的地物分类算法[J]. 测绘学报, 2016, 45(8):964-972. DOI:10.11947/j.AGCS.2016.20150654. HUANG Hong, ZHENG Xinlei. Hyperspectral image land cover classification algorithm based on spatial-spectral coordination embedding[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8):964-972. DOI:10.11947/j.AGCS.2016.20150654. [2] LI Chang, MA Yong, MEI Xiaoguang, et al. Hyperspectral image classification with robust sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5):641-645. [3] LI Li, SUN Chao, LIN Lianlei, et al. A dual-layer supervised Mahalanobis kernel for the classification of hyperspectral images[J]. Neurocomputing, 2016, 214:430-444. [4] HU Wei, HUANG Yangyu, WEI Li, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015(2):1-12. [5] 罗甫林. 高光谱图像稀疏流形学习方法研究[J]. 测绘学报, 2017, 46(3):400. DOI:10.11947/j.AGCS.2017.20160621. LUO Fulin. Sparse manifold learning for hyperspectral imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):400. DOI:10.11947/j.AGCS.2017.20160621. [6] 侯榜焕, 王锟, 姚敏立, 等. 面向高光谱图像分类的半监督空谱判别分析[J]. 测绘学报, 2017, 46(9):1098-1106. DOI:10.11947/j.AGCS.2017.20170121. HOU Banghuan, WANG Kun, YAO Minli, et al. Semi-supervised spatial-spectral discriminant analysis for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9):1098-1106. DOI:10.11947/j.AGCS.2017.20170121. [7] HUANG Hong, LUO Fulin, LIU Jiamin, et al. Dimensionality reduction of hyperspectral images based on sparse discriminant manifold embedding[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106(3):42-54. [8] BONIFAZI G, CAPOBIANCO G, SERRANTI S. Asbestos containing materials detection and classification by the use of hyperspectral imaging[J]. Journal of Hazardous Materials, 2018, 344(4):981-993. [9] LIAO Wenzhi, PIZURICA A, SCHEUNDERS P, et al. Semisupervised local discriminant analysis for feature extraction in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):184-198. [10] HUANG Hong, YANG Mei. Dimensionality reduction of hyperspectral images with sparse discriminant embedding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9):5160-5169. [11] ZHANG Lili, ZHAO Chunhui. Sparsity divergence index based on locally linear embedding for hyperspectral anomaly detection[J]. Journal of Applied Remote Sensing, 2016, 10(2):025026. [12] LI Wan, ZHANG Liangpei, ZHANG Lefei, et al. GPU parallel implementation of isometric mapping for hyperspectral classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9):1532-1539. [13] DORADO-MUNOZ L P, MESSINGER D W. Initial study of Schroedinger eigenmaps for spectral target detection[J]. Optical Engineering, 2016, 55(8):083101. [14] LÜ Meng, ZHAO Xinbin, LIU Liming, et al. Discriminant collaborative neighborhood preserving embedding for hyperspectral imagery[J]. Journal of Applied Remote Sensing, 2017, 11(4):046004. [15] DENG Yangjun, LI Hengchao, PAN Lei, et al. Modified tensor locality preserving projection for dimensionality reduction of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2):277-281. [16] LUO Renbo, LIAO Wenzhi, HUANG Xin, et al. Feature extraction of hyperspectral images with semisupervised graph learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9):4389-4399. [17] TAN Kun, HU Jun, LI Jun, et al. A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105(5):19-29. [18] WEN Jinhua, FOWLER J E, HE Mingyi, et al. Orthogonal nonnegative matrix factorization combining multiple features for spectral-spatial dimensionality reduction of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7):4272-4286. [19] XIA Junshi, BOMBRUN L, ADALI T, et al. Spectral-spatial classification of hyperspectral images using ICA and edge-preserving filter via an ensemble strategy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8):4971-4982. [20] XIA Junshi, CHANUSSOT J, DU Peijun, et al. Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2532-2546. [21] DE SOUZA F D M, SARKAR S, SRIVASTAVA A, et al. Spatially coherent interpretations of videos using pattern theory[J]. International Journal of Computer Vision, 2017, 121(1):5-25. [22] YUE Jun, ZHAO Wenzhi, MAO Shanjun, et al. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks[J]. Remote Sensing Letters, 2015, 6(6):468-477. [23] JIA Sen, ZHANG Xiujun, LI Qingquan. Spectral-spatial hyperspectral image classification using l1/2 regularized low-rank representation and sparse representation-based graph cuts[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2473-2484. [24] 魏峰, 何明一, 梅少辉. 空间一致性邻域保留嵌入的高光谱数据特征提取[J]. 红外与激光工程, 2012, 41(5):1249-1254. WEI Feng, HE Mingyi, MEI Shaohui. Hyperspectral data feature extraction using spatial coherence based neighborhood preserving embedding[J]. Infrared and Laser Engineering, 2012, 41(5):1249-1254. [25] ZHOU Yicong, PENG Jiangtao, CHEN C L P. Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2):1082-1095. [26] FENG Zhixi, YANG Shuyuan, WANG Shigang, et al. Discriminative spectral-spatial margin-based semisupervised dimensionality reduction of hyperspectral data[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2):224-228. |