[1] KIM W,CRAWFORD M M. Adaptive Classification for Hyperspectral Image Data Using Manifold Regularization Kernel Machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11): 4110-4121.
[2] MILLER D J, UYAR H S. A Mixture of Experts Classifier with Learning Based on Both Labeled and Unlabelled Data[C]//Advances in Neural Information Processing Systems 9. Cambridge, MA:MIT Press. 1997. 571-577.
[3] NIGAM K, MCCALLUM A K, THRUM S, MITCHELL T. Text Classification from Labeled and Unlabeled Documents Using EM[J]. Machine Learning. 2000. 39 (2-3). 103-134.
[4] RATSABY J, VENKATESH S. Learning from a Mixture of Labeled and Unlabeled Examples with Parametric Side Information[C]//Proceedings of the Eighth Annual Conference on Computational Learning Theory. 1995. 412-417.
[5] CASTELLI V, COVER T. The Exponential Value of Labeled Samples[J]. Pattern Recognition Letters. 1995. 16 (1). 105-111.
[6] YAROWSKY D. Unsupervised Word Sense Disambiguation Rivaling Supervised Methods[C]// Proceedings of the 33rd annual meeting of the Association of Computational Linguistics. Cambridge, MA. 1995. I 89-196.
[7] RILOFF E, WIEBE J, WILSON T. Learning Subjective Nouns Using Extraction Pattern Bootstrapping[C]// Proceedings of the 7th Conference on Natural Language Learning. 2003.
[8] ROSENBERG C, HEBERT M, SCHNEIDERMAN H. Semi-supervised Self-training of Object Detection Models[C]//Proceedings.of the 7th IEEE Workshop on Applications of Computer Vision.2005.
[9] BLUM A, MITCHELL T. Combining Labeled and Lnlabeled Data with Co-training[C]//Proceedings of the 11thAnnual Conference on Learning Theory. Madison, WI. 1998. 92-100.
[10] CHAPELLE O, ZIEN A. Semi-supervised Classification by Low Density Separation[C]//Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics. 2005. 57-64.
[11] JOACHIMS T. Transductive Inference for Text Classification Using Support Vector Machines[C]//Proceedings of the 16th International Conference on Machine Learning. Bled,Slovenia. 1999. 200-209.
[12] ZHU X J, LAFFERTY J, GHAHRAMANI Z. Semi-supervised Learning using Gaussian Fields and Harmonic Functions[C]//Proceedings of the 20th International Conference on Machine Learning, Menlo Park, California: AAAI, 2003: 912-919.
[13] ZHOU D Y, BOUSQUET O, LAL T, et al. Learning with Local and Global Consistency[C]//Advances in Neural Information Processing Systems 16, Massachusetts, 2004, 16: 321-328.
[14] WANG F, ZHANG C S. Label Propagation through Linear Neighborhoods[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(1): 55-67.
[15] ZHAO Yinghai, CAI Junjie, WU Xiuqing, et al. Sparse Graph Based Transductive Multi-label Learning for Video Concept Detection[J]. Jounal of Pattern Recognition & Artificial Intelligence, 2011, 24(6): 825-831. (赵英海, 蔡俊杰, 吴秀清, 等. 基于稀疏化图结构的转导多标注视频概念检测算法[J]. 模式识别与人工智能, 2011, 24(6):825-831.)
[16] ROHBAN M H , RABIEE H R.Supervised Neighborhood Graph Construction for Semi-supervised Classification[J]. Pattern Recognition Letters, 2012, 45(4):1363-1372.
[17] KOBAYASHI T, WATANABE K , OTSU N. Logistic Label Propagation[J]. Pattern Recognition Letters, 2012, 33(5):580-588.
[18] ZHU X J, GOLDBERG A B. Introduction to Semi-supervised Learning [M]. USA:Morgan & Claypool, 2009.
[19] WRIGHT J, YANG A Y, GANESH A, et al. Robust Face Recognition via Sparse Representation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2009, 312(2):210-227.
[20] RIDDER D D, KOUROPTEVA O, OKUN O, et al. Supervised Locally Linear Embedding[J]. Lecture Notes in Computer Science, 2003: 333-341.
[21] GAO Hengzhen. Research on Classification Techinique for Hyperspectral Remote Sensing Imagery[D].[Ph.D.dissertation],Nat-
ional University of Defense Technology, 2011.(高恒振. 高光谱遥感图像分类技术研究 [D].[博士论文]. 国防科学技术大学,2011.) |