[1] LEHARDY P K, MOORE C. Deep ocean search for Malaysia airlines flight 370[C]//Proceedings of 2014 Ocean-St. John's. St. John's, NL, Canada:IEEE, 2014:1-4. [2] 肖付民, 刘雁春, 暴景阳, 等. 海道测量学概论[M]. 2版. 北京:测绘出版社, 2016:1-3. XIAO Fumin, LIU Yanchun, BAO Jingyang, et al. Introduction for hydrography[M]. 2nd ed. Beijing:Surveying and Mapping Publishing House, 2016:1-3. [3] 赵建虎, 李娟娟, 李萌. 海洋测量的进展及发展趋势[J]. 测绘信息与工程, 2009, 34(4):25-27. ZHAO Jianhu, LI Juanjuan, LI Meng. Progress and future trend of hydrographic surveying and charting[J]. Journal of Geomatics, 2009, 34(4):25-27. [4] 曹惠芬. 我国深海探测技术装备发展现状[J]. 船舶物资与市场, 2005(2):19-22. CAO Huifen. Development status of deep-sea exploration technology and equipment in China[J]. Ship Supplies and Marketing, 2005(2):19-22. [5] 王童豪, 彭星光, 潘光, 等. 无人水下航行器的发展现状与关键技术[J]. 宇航总体技术, 2017, 1(4):52-64. WANG Tonghao, PENG Xingguang, PAN Guang, et al. Development and key technologies of unmanned underwater vehicles[J]. Aerospace Systems Engineering Technology, 2017, 1(4):52-64. [6] ZHANG Lihua, LIU Xianpeng, JIA Shuaidong, et al. A line-surface integrated algorithm for underwater terrain matching[J]. Journal of Geodesy and Geoinformation Science, 2009, 2(4):10-20. [7] 刘晨晨, 李晨, 张之猛. 基于PCNN的声纳图像纹理特征提取[J]. 自动化仪表, 2009, 30(2):18-20. LIU Chenchen, LI Chen, ZHANG Zhimeng. PCNN-based texture feature extraction of sonar images[J]. Process Automation Instrumentation, 2009, 30(2):18-20. [8] 刘卓夫, 桑恩方. 基于纹理的声纳图像识别[J]. 计算机工程, 2004, 30(14):113-115. LIU Zhuofu, SANG Enfang. Sonar image recognition based on texture[J]. Computer Engineering, 2004, 30(14):113-115. [9] 李海滨, 滕惠忠, 宋海英, 等. 基于侧扫声纳图像海底目标物提取方法[J]. 海洋测绘, 2010, 30(6):71-73. LI Haibin, TENG Huizhong, SONG Haiying, et al. Technology on the extraction of seabed target based on high resolution side-scan sonar[J]. Hydrographic Surveying and Charting, 2010, 30(6):71-73. [10] HE Hao, WANG Shuyang, WANG Shicheng, et al. A road extraction method for remote sensing image based on encoder-decoder network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2):16-25. [11] 吕良, 周超烨, 陈春, 等. 基于虚警函数的侧扫声纳水下目标实时检测方法[J]. 海洋测绘, 2013, 33(4):35-38. LÜ Liang, ZHOU Chaoye, CHEN Chun, et al. Real-time detection of underwater target using Side-scan sonar based on false alarm function[J]. Hydrographic Surveying and Charting, 2013, 33(4):35-38. [12] 朱殿尧, 卞红雨. 侧扫声纳目标自动探测研究[J]. 吉林大学学报(信息科学版), 2008, 26(6):627-631. ZHU Dianyao, BIAN Hongyu. Research of side-scan sonar target auto detection[J]. Journal of Jilin University (Information Science Edition), 2008, 26(6):627-631. [13] DAI Yuchao, ZHANG Jing, HE Mingyi, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):101-110. [14] 田杰, 张春华. 基于分形的水声图像目标探测[J]. 中国图象图形学报, 2005, 10(4):479-483. TIAN Jie, ZHANG Chunhua. Fractal-based detection of objects in underwater images[J]. Journal of Image and Graphics, 2005, 10(4):479-483. [15] 朱殿尧. 水声图像处理与模式识别[D]. 哈尔滨:哈尔滨工程大学, 2008. ZHU Dianyao. Underwater acoustic image processing and pattern recognition[D]. Harbin:Harbin Engineering University, 2008. [16] KÜÇÜKBAYRAK M, GÜNEŞ Ö, ARICA N. Underwater acoustic signal recognition methods[J]. Journal of Naval Science and Engineering, 2009, 5(3):64-78. [17] KAMAL S, MOHAMMED S K, SASEENDRAN PILLAI P R, et al. Deep learning architectures for underwater target recognition[C]//Proceeding of 2013 Ocean Electronics (SYMPOL). Kochi, India:IEEE, 2013:48-54. [18] RHINELANDER J. Feature extraction and target classification of side-scan sonar images[C]//Proceedings of 2016 IEEE Symposium Series on Computational Intelligence (SSCI). Athens, Greece:IEEE, 2016:1-6. [19] 郭军, 马金凤, 王爱学. 基于SVM算法和GLCM的侧扫声纳影像分类研究[J]. 测绘与空间地理信息, 2015, 38(3):60-63. GUO Jun, MA Jinfeng, WANG Aixue. Study of side scan sonar image classification based on SVM and gray level Co-Cccurrence Matrix[J]. Geomatics & Spatial Information Technology, 2015, 38(3):60-63. [20] 陈强. 基于水声图像水下目标识别的技术研究[D]. 哈尔滨:哈尔滨工程大学, 2012. CHEN Qiang. Research-based underwater acoustic images underwater target recognition[D]. Harbin:Harbin Engineering University, 2012. [21] 郭海涛. 高分辨率成像声呐后置图像处理[D]. 哈尔滨:哈尔滨工程大学, 2002(13):74-82. GUO Haitao. Study on image recognition technique of high resolution imaging sonar[D]. Harbin:Harbin Engineering University, 2002(13):74-82. [22]LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of IEEE, 1998, 86(11):2278-2324. [23]FUKUSHIMA K. Neocognitron:a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4):193-202. [24] SUN Long, WU Tao, SUN Guangcai,et al. Object detection research of SAR image using improved faster region based convolutional neural network[J].Journal of Geodesy and Geoinformation Science,2020,3(03):18-28. [25] 冯国徽. 基于卷积神经网络VGG模型的小规模图像分类[D].兰州:兰州大学,2018. FENG Guohui.Small-scale picture classification based on convolutional neural network VGG[D].Lanzhou:Lanzhou University,2018. [26] REZA Fuad Rachmadi,I Ketut Eddy Purnama. Paralel spatial pyramid convolutional neural network untuk verifikasi kekerabatan berbasis citra wajah[J]. Jurnal Teknologi dan Sistem Komputer,2018,6(4):152-157. [27] TIAN Lei, FAN Chunxiao, YUE Ming, et al. Stacked PCA Network (SPCANet):An effective deep learning for face recognition[C]//Proceedings of 2015 IEEE International Conference on Digital Signal Processing. Singapore:IEEE, 2015:1039-1043. [28] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image Net classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90. [29] BENGIO Y, BASTIEN F, BERGERON A, et al. Deep learners benefit more from out-of-distribution examples[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Ft. Lauderdale, USA:MIT Press, 2012:164-172. [30] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. [31] BIAN Yingxian, GUO Genchang. A transfer learning and performance comparison of deep learning models for pedestrian classification under automobile driving environment[J]. The Journal of Korean Institute of Information Technology, 2018, 16(10):83-92. [32] DO C B, NG A Y. Transfer learning for text classification[C]//Advances in Neural Information Processing Systems 18. Vancouver, B.C., Canada:Curran Associates, Inc., 2005:1391-1398. [33] MIHALKOVA L, HUYNH T, MOONEY R J. Mapping and revising Markov logic networks for transfer[C]//Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI-2007). Vancouver, British Columbia, Canada:AAAI, 2007:608-614. [34] NICULESCU-MIZIL A, CARUANA R. Inductive Transfer for Bayesian network structure learning[C]//Proceedings of 2012 ICML Workshop on Unsupervised and Transfer Learning. 2012, 27:167-181. [35] YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014:3320-3328. [36] 常东良. 基于深度学习的小样本图像分类方法研究[D]. 兰州:兰州理工大学, 2019. CHANG Dongliang. The research on small sample image classification method based on deep learning[D]. Lanzhou:Lanzhou University of Technology, 2019. [37] 郑欣悦. 基于深度学习的少样本图像分类方法[D]. 北京:中国科学院大学(中国科学院国家空间科学中心), 2019. ZHENG Xinyue. Few-shot image classification method based on deep learning[D]. Beijing:University of Chinese Academy of Sciences (National Space Science Center, Chinese Academy of Sciences), 2019. [38] 耿艳磊, 陶超, 沈靖, 等. 高分辨率遥感影像语义分割的半监督全卷积网络法[J]. 测绘学报, 2020, 49(4):499-508. DOI:10.11947/j.AGCS.2020.20190044. GENG Yanlei, TAO Chao, SHEN Jing, et al. High-resolution remote sensing image semantic segmentation based on semi-supervised full convolution network method[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4):499-508. DOI:10.11947/j.AGCS.2020.20190044. [39] FAN Dazhao, DONG Yang,ZHANG Yongsheng. Satellite image matching method based on deep convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):90-100. [40] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. NewYork:IEEE Press, 2017:936-944. [41] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. Lake Tahoe, Nevada, USA:Morgan Kaufmann Publishers, Inc., 2012:1097-1105. |