[1] 王晨捷, 罗斌, 李成源,等. 无人机视觉SLAM协同建图与导航[J]. 测绘学报, 2020, 49(6):767-776. WANG Chenjie, LUO Bin, LI Chengyuan, et al. UAV visual SLAM collaborative mapping and navigation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6):767-776. [2] ZHANG Y L, TAN J D, ZENG Z M, et al. Monocular camera and IMU integration for indoor position estimation[C]//Proceedings of 2014 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago, USA, 2014:1198-1201. [3] 邸凯昌, 万文辉, 赵红颖,等. 视觉SLAM技术的进展与应用[J]. 测绘学报, 2018, 47(6):770-779. DOI:10.11947/j.AGCS.2018.20170652. DI Kaichang, WAN Wenhui, ZHAO Hongying, et al. Progress and application of visual SLAM technology[J]. Journal of Surveying and Mapping, 2018, 47(6):770-779. DOI:10.11947/j.AGCS.2018.20170652. [4] XU C, LIU Z, LI Z. Robust visual-inertial navigation system for low precision sensors under indoor and outdoor environments[J]. Remote Sensing, 2021, 13(4):772. [5] USENKO V, ENGEL J, STUCKLER J, et al. Direct visual-inertial odometry with stereo cameras[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA).[S.l.]:IEEE, 2016:1885-1892. [6] Robust stereo visual-inertial odometry using nonlinear optimization[J]. Sensors, 2019, 19(17):3747. [7] CHENG J, KIM J, JIANG Z, et al. Tightly coupled SLAM/GNSS for land vehicle navigation[J]. Lecture Notes in Electrical Engineering, 2014, 305:721-733. [8] PAUL G, KYLE O. Tightly-coupled GNSS/Vision using a sky-pointing camera for vehicle navigation in urban areas[J]. Sensors, 2018, 18(4):1244-1255. [9] QIN Tong, LI Peiliang L, SHEN Shaojie. VINS-Mono:a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2017, PP (99):1-17. [10] MASCARO R, TEIXEIRA L, HINZMANN T, et al. GOMSF:Graph-optimization based multi-sensor fusion for robust UAV pose estimation[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA).[S.l.]:IEEE, 2018:1421-1428. [11] LYNEN S, ACHTELIK M W, WEISS S, et al. A robust and modular multi-sensor fusion approach applied to mav navigation[C]//Proceedings of 2013 IEEE/RSJ international conference on intelligent robots and systems.[S.l.]:IEEE, 2013:3923-3929. [12] DU T, ZENG Y H, J Yang, et al. Multi-sensor fusion SLAM approach for the mobile robot with a bio-inspired polarised skylight sensor[J]. IET Radar Sonar? Navigation, 2020, 14(12):1950-1957. [13] 陈林. 基于动态视觉定位的惯性导航地标修正方法研究[D]. 长沙:国防科学技术大学, 2008. CHEN Lin. Research on inertial navigation landmark correction method based on dynamic visual positioning[D]. Changsha:National University of Defense Technology, 2008. [14] 王亚宾. 伪卫星室内独立定位演示验证系统研究和设计[D]. 上海:上海交通大学, 2012. WANG Yabin. Research and design of pseudolite indoor independent positioning demonstration and verification system[D]. Shanghai:Shanghai Jiaotong University, 2012. [15] KEE C, JUN H, YUN D. Indoor navigation system using asynchronous pseudolites[J]. The Journal of Navigation, 2003, 56(3):443-455. [16] NAWAZ H, BOZKURT A, TEKIN I. A novel power efficient asynchronous time difference of arrival indoor localization system using CC1101 radio transceivers[J]. Microwave & Optical Technology Letters, 2017, 59(3):550-555. [17] LI X, HUANG G, ZHANG P, et al. Reliable indoor pseudolite positioning based on a robust estimation and partial ambiguity resolution method[J]. Sensors (Basel, Switzerland), 2019, 19(17):3692-3704. [18] GAN Xingli, YU Baoguo, HUANG Lu, et al. Doppler differential positioning technology using the BDS/GPS indoor array pseudolite system[J]. Sensors, 2019, 19(20):4580-4590. [19] HUANG Lu, GAN Xingli, YU Baoguo, et al. An innovative fingerprint location algorithm for indoor positioning based on array pseudolite[J]. Sensors, 2019, 19(20):4420-4432. [20] 王滨辉, 宋沙磊, 龚威,等. 全波形激光雷达的波形优化分解算法[J]. 测绘学报, 2017, 46(11):1859-1867. WANG Binhui, SONG Shalei, GONG Wei, et al. Waveform optimization decomposition algorithm for full-waveform lidar[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11):1859-1867. [21] 王彬, 李建成, 高井祥,等. 抗差加权整体最小二乘模型的牛顿-高斯算法[J]. 测绘学报, 2015, 44(6):602-608. WANG Bin, LI Jiancheng, GAO Jingxiang, et al. Newton-Gaussian algorithm of robust weighted overall least squares model[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6):602-608. [22] KE Y, MA C. A neural network for the generalized nonlinear complementarity problem overapolyhe-dRal cone[J]. Journal of the Australian Mathematical Society, 2015, 99(03):364-379. [23] WANG Y, MA F, ZHANG J. A Non-smooth L-M method for solving the generalized nonlinear complementarity problem over a polyhedral cone[J]. Applied Mathematics & Optimization, 2005, 52(1):73-92. [24] DU S Q. A Non-smooth Levenberg-Marquardt method for generalized complementarity problem[J]. Journal of information and computing science, 2012, 7(4):267-271. [25] 范云锋, 刘博, 郑益凯. 一种基于三次样条曲线的目标航迹拟合与插值方法研究[J]. 数字技术与应用, 2019, 37(3):138-139. FAN Yunfeng, LIU Bo, ZHENG Yikai. Research on a target track fitting and interpolation method based on cubic spline curve[J]. Digital Technology and Application, 2019, 37(3):138-139. [26] 许小勇,钟太勇. 三次样条插值函数的构造与MATLAB实现[J].兵工自动化, 2006, 25(11):76-78. XU Xiaoyong, ZHONG Taiyong. The construction of cubic spline interpolation function and its realization in MATLAB[J]. Ordnance Industry Automation, 2006, 25(11):76-78. [27] 吴富梅,杨元喜.一种两步自适应抗差Kalman滤波在GPS/INS组合导航中的应用[J].测绘学报,2010,39(5):522-527,533. WU Fumei, YANG Yuanxi. Application of a two-step adaptive robust Kalman filter in GPS/INS integrated navigation[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5):522-527,533. [28] 杨元喜. 自适应动态导航定位[M]. 北京:测绘出版社, 2006. YANG Yuanxi. Adaptive dynamic navigation and positioning[M]. Beijing:Surveying and Mapping Publishing House, 2006. |