[1] STEINIGER S, LANGE T, BURGHARDT D, et al. An approach for the classification of urban building structures based on discriminant analysis techniques[J]. Transactions in GIS, 2008, 12(1): 31-59. [2] 胡慧明,钱海忠,何海威,等. 采用层次分析法的面状居民地自动选取[J]. 测绘学报,2016,45(6):740-746.DOI:10.11947 /j.AGCS.2016.20150078. HU Huiming, QIAN Haizhong, HE Haiwei,et al. Auto-selection of areal habitation based on analytic hierarchy process[J]. Acta Geodaetica et Cartographica Sinica,2016,45(6);740-746. DOI:10.11947/j.AGCS.2016.20150078. [3] 黄宝群, 盛业华, 郭宁宁, 等. 同名边界点的面状居民地要素匹配[J]. 测绘科学, 2018, 43(2): 108-113. HUANG Baoqun, SHENG Yehua, GUO Ningning, et al. Residential polygon features matching based on identical boundary points[J]. Science of Surveying and Mapping, 2018, 43(2): 108-113. [4] 张桥平, 李德仁, 龚健雅. 城市地图数据库面实体匹配技术[J]. 遥感学报, 2004, 8(2): 107-112. ZHANG Qiaoping, LI Deren, GONG Jianya. Areal feature matching among urban geographic databases[J]. Journal of Remote Sensing, 2004, 8(2): 107-112. [5] LINDSEY D T. Vision science: photons to phenomenology[J]. Optometry and Vision Science, 2000, 77(5): 233-234. [6] 艾廷华, 帅赟, 李精忠. 基于形状相似性识别的空间查询[J]. 测绘学报, 2009, 38(4): 356-362. AI Tinghua, SHUAI Yun, LI Jingzhong. A spatial query based on shape similarity cognition[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(4): 356-362. [7] AI Tinghua, CHENG Xiaoqiang, LIU Pengcheng, et al. A shape analysis and template matching of building features by the Fourier transform method[J]. Computers, Environment and Urban Systems, 2013, 41: 219-233. [8] 程绵绵,孙群,徐立,等.面轮廓线相似性和复杂性度量及在化简中的应用[J].测绘学报,2019,48(4):489-501. DOI:10.11947/j.AGCS.2019.20180124. CHENG Mianmian, SUN Qun, XU Li, et al, Polygon contour similarity and complexity measurement and application in simplification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4):489-501. DOI:10.11947/j.AGCS.2019.20180124. [9] 晏雄锋,艾廷华,杨敏. 居民地要素化简的形状识别与模板匹配方法[J]. 测绘学报,2016,45(7):874-882. DOI:10.11947/j.AGCS.2016.20150162. YAN Xiongfeng, AI Tinghua, YANG Min. A simplification of residential feature by the shape cognition and template matching method[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(7):874-882. DOI:10.11947/j.AGCS.2016.20150162. [10] YONG K L, ŽALIK B. An efficient chain code with Huffman coding[J]. Pattern Recognition, 2005, 38(4): 553-557. [11] PETER A M, RANGARAJAN A. Maximum likelihood wavelet density estimation with applications to image and shape matching[J]. IEEE Transactions on Image Processing, 2008, 17(4): 458-468. [12] BELONGIE S, MALIK J, PUZICHA J. Shape matching and object recognition using shape contexts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522. [13] SAAVEDRA J M. Sketch based image retrieval using a soft computation of the histogram of edge local orientations (S-HELO)[C]//Proceedings of 2014 IEEE International Conference on Image Processing. Paris, France:IEEE, 2014: 2998-3002. [14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [15] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2014: 1746-1751. [16] ABDEL-HAMID O, MOHAMED A R, JIANG Hui, et al. Convolutional neural networks for speech recognition[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10): 1533-1545. [17] SUN Long, WU Tao, SUN Guangcai, et al. Object detection research of SAR image using improved faster region-based convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 18-28. DOI:10.11947/j.JGGS.2020.0302. [18] ZUO Zongcheng, ZHANG Wen, ZHANG Dongying. A remote sensing image semantic segmentation method by combining deformable convolution with conditional random fields[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6): 718-726. [19] GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 1-15. DOI: 10.11947/j.JGGS.2018.0101. [20] 何海威,钱海忠,谢丽敏,等.立交桥识别的CNN卷积神经网络法[J].测绘学报,2018,47(3):385-395. DOI:10.11947/j.AGCS.2018.20170265. HE Haiwei,QIAN Haizhong,XIE Limin, et al. Interchange recognition method based on CNN[J]. Acta Geodaetica et Cartographica Sinica, 2018,47(3):385-395.DOI:10.11947/j.AGCS.2018.20170265. [21] 张鸿刚, 李成名, 武鹏达, 等. GoogLeNet神经网络的复杂交叉路口识别方法[J]. 测绘科学, 2020, 45(10): 190-197. ZHANG Honggang, LI Chengming, WU Pengda, et al. A complex junction recognition method based on GoogleNet model[J]. Science of Surveying and Mapping, 2020, 45(10): 190-197. [22] 马磊, 闫浩文, 王中辉, 等. 机器自监督学习的建筑物面要素几何形状度量[J]. 测绘科学, 2017, 42(12): 171-177. MA Lei, YAN Haowen, WANG Zhonghui, et al. Geometry shape measurement of building surface elements based on self-supervised machine learning[J]. Science of Surveying and Mapping, 2017, 42(12): 171-177. [23] YAN Xiongfeng, AI Tinghua, YANG Min, et al. A graph convolutional neural network for classification of building patterns using spatial vector data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 259-273. [24] YAN Xiongfeng, AI Tinghua, YANG Min, et al. Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps[J]. International Journal of Geographical Information Science, 2021, 35(3): 490-512. [25] 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780. XU Bingbing, CEN Keting, HUANG Junjie, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780. [26] SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30(3): 83-98. [27] MICHELI A. Neural network for graphs: a contextual constructive approach[J]. IEEE Transactions on Neural Networks, 2009, 20(3): 498-511. [28] ATWOOD J, TOWSLEY D. Diffusion-Convolutional neural networks[EB/OL]. (2021-12-19).https//arXiv:1511.02136,2015. [29] MONTI F, BOSCAINI D, MASCI J, et al. Geometric deep learning on graphs and manifolds using mixture model CNNs[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu, HI, USA: IEEE, 2017: 5425-5434. [30] KIPF T N,WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL].(2021-12-19).https//arxiv. org/abs1609. 02907,2016. [31] GLOROT X,BENGIO Y. Understanding the difficulty of training deep feed forward neural networks[C]//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics.Sardinia,Italy:[s.n.],2010. [32] YAN Xiongfeng, AI Tinghua, ZHANG Xiang. Template matching and simplification method for building features based on shape cognition[J]. ISPRS International Journal of Geo-Information, 2017, 6(8): 250. |