Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (10): 2007-2020.doi: 10.11947/j.AGCS.2024.20230245.
• Cartography and Geoinformation • Previous Articles
Piao LUO1,2,3,(), Junkui XU1,2,3(), Fang WU4, Yakun LÜ1,2,3, Qingwen ZHUANG1,2,3
Received:
2023-07-07
Published:
2024-11-26
Contact:
Junkui XU
E-mail:104754200200@henu.edu.cn;10130153@vip.henu.edu.cn
About author:
LUO Piao (1996—), male, postgraduate, majors in intelligent map generalization and spatial cognition. E-mail: 104754200200@henu.edu.cn
Supported by:
CLC Number:
Piao LUO, Junkui XU, Fang WU, Yakun LÜ, Qingwen ZHUANG. A generative neural network method for road simplification[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 2007-2020.
Tab.6
Some data statistics before and after road simplification in Weishi county"
ID | 化简前1∶25万 | 化简后1∶100万 | ID | 化简前1∶25万 | 化简后1∶100万 | ID | 化简前1∶25万 | 化简后1∶100万 | ID | 化简前1∶25万 | 化简后1∶100万 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 12 | 4 | 16 | 31 | 7 | 31 | 22 | 20 | 46 | 43 | 21 |
2 | 32 | 14 | 17 | 40 | 18 | 32 | 23 | 13 | 47 | 44 | 22 |
3 | 9 | 8 | 18 | 8 | 7 | 33 | 10 | 7 | 48 | 12 | 4 |
4 | 18 | 10 | 19 | 34 | 26 | 34 | 45 | 24 | 49 | 62 | 19 |
5 | 11 | 10 | 20 | 13 | 9 | 35 | 79 | 73 | 50 | 152 | 63 |
6 | 8 | 3 | 21 | 15 | 12 | 36 | 12 | 7 | 51 | 113 | 35 |
7 | 12 | 7 | 22 | 32 | 29 | 37 | 16 | 4 | 52 | 53 | 25 |
8 | 22 | 16 | 23 | 67 | 35 | 38 | 17 | 16 | 53 | 16 | 12 |
9 | 11 | 6 | 24 | 68 | 29 | 39 | 61 | 23 | 54 | 19 | 10 |
10 | 24 | 21 | 25 | 25 | 20 | 40 | 28 | 26 | 55 | 27 | 8 |
11 | 31 | 14 | 26 | 120 | 44 | 41 | 63 | 43 | 56 | 48 | 21 |
12 | 53 | 20 | 27 | 68 | 34 | 42 | 9 | 7 | 57 | 8 | 6 |
13 | 20 | 12 | 28 | 66 | 40 | 43 | 121 | 89 | 58 | 70 | 31 |
14 | 12 | 10 | 29 | 113 | 96 | 44 | 26 | 12 | |||
15 | 12 | 6 | 30 | 53 | 28 | 45 | 69 | 47 |
[1] |
武芳, 巩现勇, 杜佳威. 地图制图综合回顾与前望[J]. 测绘学报, 2017, 46(10):1645-1664. DO1:.
doi: 10.11947/j.AGCS.2017.20170287 |
WU Fang, GONG Xianyong, DU Jiawei. Overview of the research progress in automated[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1645-1664. DO1:.
doi: 10.11947/j.AGCS.2017.20170287 |
|
[2] | DOUGLAS D H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica: the International Journal for Geographic Information and Geovisualization, 1973, 10(2):112-122. |
[3] | LI Zhilin, OPENSHAW S. Algorithms for automated line generalization 1 on a natural principle of objective generalization[J]. International Journal of Geographical Information Systems, 1992, 6(5):373-389. |
[4] | TEH C H, CHIN R T. On the detection of dominant points on digital curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(8):859-872. |
[5] | 邓敏, 陈杰, 李志林, 等. 曲线简化中节点重要性度量方法比较及垂比弦法的改进[J]. 地理与地理信息科学, 2009, 25(1):40-43. |
DENG Min, CHEN Jie, LI Zhilin, et al. An improved local measure method for the importance of vertices in curve simplification[J]. Geography and Geo-Information Science, 2009, 25(1):40-43. | |
[6] | 朱鲲鹏, 武芳, 王辉连, 等. Li-Openshaw算法的改进与评价[J]. 测绘学报, 2007, 36(4):450-456. |
ZHU Kunpeng, WU Fang, WANG Huilian, et al. Improvement and assessment of Li-Openshaw algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(4):450-456. | |
[7] | 王荣, 闫浩文, 禄小敏. Douglas-Peucker算法全自动化的多尺度空间相似关系方法[J]. 地球信息科学学报, 2021, 23(10):1767-1777. |
WANG Rong, YAN Haowen, LU Xiaomin. Automation of the Douglas-Peucker algorithm based on spatial similarity relations[J]. Journal of Geo-Information Science, 2021, 23(10):1767-1777. | |
[8] | WANG Zeshen, MÜLLER J C. Line generalization based on analysis of shape characteristics[J]. Cartography and Geographic Information Systems, 1998, 25(1):3-15. |
[9] | 毋河海. 数字曲线拐点的自动确定[J]. 武汉大学学报(信息科学版), 2003, 28(3):330-335. |
WU Hehai. Automatic determination of inflection point and its applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(3):330-335. | |
[10] | 郭庆胜, 黄远林, 章莉萍. 曲线的弯曲识别方法研究[J]. 武汉大学学报(信息科学版), 2008, 33(6):596-599. |
GUO Qingsheng, HUANG Yuanlin, ZHANG Liping. The method of curve bend recognition[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6):596-599. | |
[11] | 艾廷华, 郭仁忠, 刘耀林. 曲线弯曲深度层次结构的二叉树表达[J]. 测绘学报, 2001, 30(4):343-348. |
AI Tinghua, GUO Renzhong, LIU Yaolin. A binary tree representation of curve hierarchical structure in depth[J]. Acta Geodaetica et Cartographic Sinica, 2001, 30(4):343-348. | |
[12] | 翟仁健, 武芳, 朱丽, 等. 曲线形态的结构化表达[J]. 测绘学报, 2009, 38(2):175-182. |
ZHAI Renjian, WU Fang, ZHU Li, et al. Structured representation of curve shape[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(2):175-182. | |
[13] | 杜佳威, 武芳, 李靖涵, 等. 采用多元弯曲组划分的线要素化简方法[J]. 计算机辅助设计与图形学学报, 2017, 29(12):2189-2196. |
DU Jiawei, WU Fang, LI Jinghan, et al. Line simplification method based on multi-bends groups division[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(12):2189-2196. | |
[14] | 钱海忠, 何海威, 王骁, 等. 采用三元弯曲组划分的线要素化简方法[J]. 武汉大学学报(信息科学版), 2017, 42(8):1096-1103. |
QIAN Haizhong, HE Haiwei, WANG Xiao, et al. Line feature simplification method based on bend group division[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8):1096-1103. | |
[15] | AI Tinghua, KE Shu, YANG Min, et al. Envelope generation and simplification of polylines using Delaunay triangulation[J]. International Journal of Geographical Information Science, 2017, 31(2):297-319. |
[16] | 郑春燕, 郭庆胜, 胡华科. 基于蚁群优化算法的线状目标简化模型[J]. 测绘学报, 2011, 40(5):635-638. |
ZHENG Chunyan, GUO Qingsheng, HU Huake. The simplification model of linear objects based on ant colony optimization algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(5):635-638. | |
[17] | 段佩祥, 钱海忠, 何海威, 等. 基于支持向量机的线化简方法[J]. 武汉大学学报(信息科学版), 2020, 45(5):744-752, 783. |
DUAN Peixiang, QIAN Haizhong, HE Haiwei, et al. A line simplification method based on support vector machine[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5):744-752, 783. | |
[18] |
杜佳威, 武芳, 朱丽, 等. 图形、图像融合利用的集成学习智能化简方法及其在岛屿岸线化简中的应用[J]. 测绘学报, 2022, 51(3):373-387. DOI:.
doi: 10.11947/j.AGCS.2022.20210135 |
DU Jiawei, WU Fang, ZHU Li, et al. An ensemble learning simplification approach based on multiple machine-learning algorithms with the fusion using of raster and vector data and a use case of coastline simplification[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3):373-387. DOI:.
doi: 10.11947/j.AGCS.2022.20210135 |
|
[19] | DU Jiawei, WU Fang, XING Ruixing, et al. An automated approach to coastline simplification for maritime structures with collapse operation[J]. Marine Geodesy, 2021, 44(3):157-195. |
[20] | YAN Xiongfeng, AI Tinghua, YANG Min, et al. Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps[J]. International Journal of Geographical Information Science, 2021, 35(3):490-512. |
[21] | 武芳, 杜佳威, 钱海忠, 等. 地图综合智能化研究的发展与思考[J]. 武汉大学学报(信息科学版), 2022, 47(10):1675-1687. |
WU Fang, DU Jiawei, QIAN Haizhong, et al. Overview of research progress and reflections in intelligent map generalization[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10):1675-1687. | |
[22] | 朱强, 武芳, 钱海忠, 等. 一种顾及认知规律的曲线弯曲识别方法[J]. 辽宁工程技术大学学报(自然科学版), 2014, 33(4):521-526. |
ZHU Qiang, WU Fang, QIAN Haizhong, et al. An identification method of line curves based on cognitive laws[J]. Journal of Liaoning Technical University (Natural Science), 2014, 33(4):521-526. | |
[23] | 戴汝为. 模式识别的一类属性文法[J]. 自动化学报, 1983, 9(2):90-98. |
DAI Ruwei. Pattern recognition is a kind of attribute grammar[J]. Journal of Automation, 1983, 9(2):90-98. | |
[24] | SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[J]. Advances in Neural Information Processing Systems, 2014, 4(1):3104-3112. |
[25] | CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Doha: Association for Computational Linguistics, 2014. |
[26] | ZHAO Rui, WANG Dongzhe, YAN Ruqiang, et al. Machine health monitoring using local feature-based gated recurrent unit networks[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2):1539-1548. |
[27] |
LUONG M T, PHAM H, MANNING C D. Effective approaches to attention-based neural machine translation[J]. Computer Science, 2015. DOI:.
doi: 10.18653/v1/D15-1166 |
[28] |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. Computer Science, 2014. DOI:.
doi: 10.48550/arXiv.1409.0473 |
[29] | KÖRDING K P, WOLPERT D M. The loss function of sensorimotor learning[J]. Proceedings of the National Academy of Sciences of the United States of America. 2004, 101(26):9839-9842. |
[30] |
KINGMA D, BA J. Adam: a method for stochastic optimization[J]. Computer Science, 2014. DOI:.
doi: 10.48550/arXiv.1412.6980 |
[31] |
KESKAR N S, MUDIGERE D, NOCEDAL J, et al. On large-batch training for deep learning: generalization gap and sharp minima[J]. Computer Science, 2016. DOI:.
doi: 10.48550/arXiv.1609.04836 |
[32] | 何海威, 钱海忠, 段佩祥, 等. 线要素化简及参数自动设置的案例推理方法[J]. 武汉大学学报(信息科学版), 2020, 45(3):344-352. |
HE Haiwei, QIAN Haizhong, DUAN Peixiang, et al. Case based reasoning method for line element simplification and automatic parameter setting[J]. Journal of Wuhan University (Information Science Edition), 2020, 45(3):344-352. | |
[33] | 武芳, 朱鲲鹏. 线要素化简算法几何精度评估[J]. 武汉大学学报(信息科学版), 2008, 33(6):600-603. |
WU Fang, ZHU Kunpeng. Geometric accuracy assessment of linear features' simplification algorithms[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6):600-603. |
[1] | Yan SHI, Da WANG, Min DENG, Xuexi YANG. Spatio-temporal anomaly detection: connotation transformation and implementation path from data-driven to knowledge-driven modeling [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1493-1504. |
[2] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
[3] | Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335. |
[4] | Liming JIANG, Yi SHAO, Zhiwei ZHOU, Peifeng MA, Teng WANG. A review of intelligent InSAR data processing: recent advancements, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1037-1056. |
[5] | Chi GUO, Yang LIU, Yarong LUO, Jingnan LIU, Quan ZHANG. Research progress in the application of image semantic information in visual SLAM [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1057-1076. |
[6] | Xunqiang GONG, Hongyu WANG, Tieding LU, Wei YOU. A general progressive decomposition long-term prediction network model for high-speed railway bridge pier settlement [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1113-1127. |
[7] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
[8] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
[9] | Zhanlong CHEN, Xiechun LU, Yongyang XU. A building aggregation method based on deep clustering of graph vertices [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 736-749. |
[10] | Huimin LIU, Chenwei ZHANG, Kaiqi CHEN, Min DENG, Chong PENG. Deep learning-based spatio-temporal prediction and uncertainty assessment of urban PM2.5 distribution [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 750-760. |
[11] | SUN Chuanmeng, WEI Yu, LI Xinyu, MA Tiehua, WU Zhibo. Intelligent detection method of image water level inversion for water level without water scale in complex scenes [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 558-568. |
[12] | LIAO Zhaohong, ZHANG Yichen, YANG Biao, LIN Mingchun, SUN Wenbo, GAO Zhi. Monocular height estimation method of remote sensing image based on Swin Transformer-CNN and its application in highway road construction sites [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 344-352. |
[13] | LIN Yunhao, WANG Yanjun, LI Shaochun, CAI Hengfan. A coupled DeepLab and Transformer approach for fine classification of crop cultivation types in remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 353-366. |
[14] | Mi WANG, Xu CHENG, Jun PAN, Yingdong PI, Jing XIAO. Large models enabling intelligent photogrammetry: status, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1955-1966. |
[15] | JIANG Baode, HANG Wei, XU Shaofen, WU Yong. Multi-scale building instance refinement extraction from remote sensing images by fusing with decentralized adaptive attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1504-1514. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||